- Previous Article
- IPI Home
- This Issue
-
Next Article
Recovering conductivity at the boundary in three-dimensional electrical impedance tomography
Non-local regularization of inverse problems
1. | Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16, France, France |
2. | GREYC, Université de Caen, 14050 Caen Cedex, France |
References:
[1] |
A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering,, ACM Transactions on Graphics, 28 (2009). Google Scholar |
[2] |
J.-F. Aujol, Some first-order algorithms for total variation based image restoration,, J. Math. Imaging Vis., 34 (2009), 307.
doi: 10.1007/s10851-009-0149-y. |
[3] |
J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view,, SIAM Journal on Mathematical Analysis, 42 (2010), 1246.
doi: 10.1137/080743883. |
[4] |
M. Avriel, "Nonlinear Programming: Analysis and Methods,", Dover Publishing, (2003).
|
[5] |
C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Processing, 10 (2001), 1200.
doi: 10.1109/83.935036. |
[6] |
J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration,, In, IV (2004), 1. Google Scholar |
[7] |
M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting,, In, (2000), 417. Google Scholar |
[8] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490.
doi: 10.1137/040616024. |
[9] |
A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation,", Preprint CMLA 2006-22, (2006), 2006. Google Scholar |
[10] |
A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking,, IEEE Trans. Image Proc., 18 (2009), 1192.
doi: 10.1109/TIP.2009.2017171. |
[11] |
E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406.
doi: 10.1109/TIT.2006.885507. |
[12] |
A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89.
|
[13] |
T. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math, 62 (2002), 1019.
doi: 10.1137/S0036139900368844. |
[14] |
P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation,", Cambridge University Press, (1989).
|
[15] |
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. of the Nat. Ac. of Science, 102 (2005), 7426.
doi: 10.1073/pnas.0500334102. |
[16] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Modeling & Simulation, 4 (2005), 1168.
doi: 10.1137/050626090. |
[17] |
A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting,, IEEE Transactions on Image Processing, 13 (2004), 1200.
doi: 10.1109/TIP.2004.833105. |
[18] |
D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection,, Journal of Mult. System and Sig. Proc., 18 (2007), 103.
doi: 10.1007/s11045-007-0018-z. |
[19] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413.
doi: 10.1002/cpa.20042. |
[20] |
D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289.
doi: 10.1109/TIT.2006.871582. |
[21] |
D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage,, Biometrika, 81 (1994), 425.
doi: 10.1093/biomet/81.3.425. |
[22] |
D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,, Preprint, (2006). Google Scholar |
[23] |
M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples',, In, (2007), 117. Google Scholar |
[24] |
A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling,, In, (1033). Google Scholar |
[25] |
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries,, IEEE Trans. on Image Processing, 15 (2006), 3736.
doi: 10.1109/TIP.2006.881969. |
[26] |
M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA),, Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340.
doi: 10.1016/j.acha.2005.03.005. |
[27] |
A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,, IEEE Tr. on Image Processing, 17 (2008), 1047.
doi: 10.1109/TIP.2008.924284. |
[28] |
G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images,", IMA Preprint Series # 2264, (2264). Google Scholar |
[29] |
M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations,, The Computer Journal, 52 (2009), 64.
doi: 10.1093/comjnl/bxm055. |
[30] |
S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution,, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47.
doi: 10.1002/ima.20007. |
[31] |
W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution,, IEEE Computer Graphics and Applications, 22 (2002), 56.
doi: 10.1109/38.988747. |
[32] |
G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization,", UCLA CAM Report 06-57, (2006), 06. Google Scholar |
[33] |
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, SIAM Multiscale Modeling and Simulation, 6 (2007), 595.
doi: 10.1137/060669358. |
[34] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005.
|
[35] |
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals,, SIAM Mult. Model. and Simul., 4 (2005), 1091.
doi: 10.1137/050622249. |
[36] |
M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods,, IEEE Signal Processing Letters, 12 (2005), 839.
doi: 10.1109/LSP.2005.859509. |
[37] |
J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration,, IEEE Trans. Image Proc., 17 (2008), 53.
doi: 10.1109/TIP.2007.911828. |
[38] |
F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis,, SIAM Journal on Numer. An., 39 (2001), 1.
|
[39] |
S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition,, Academic Press, (2008).
|
[40] |
S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Processing, 11 (2002), 68.
doi: 10.1109/83.982815. |
[41] |
M. Mignotte, A non-local regularization strategy for image deconvolution,, Pattern Recognition Letters, 29 (2008), 2206.
doi: 10.1016/j.patrec.2008.08.004. |
[42] |
Y. Nesterov, Smooth minimization of non-smooth functions,, Math. Program. Ser. A, 103 (2005), 127.
doi: 10.1007/s10107-004-0552-5. |
[43] |
B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images,, Nature, 381 (1996), 607.
doi: 10.1038/381607a0. |
[44] |
S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview,, IEEE Signal Processing Magazine, 20 (2003), 21.
doi: 10.1109/MSP.2003.1203207. |
[45] |
G. Peyré, Image processing with non-local spectral bases,, SIAM Multiscale Modeling and Simulation, 7 (2008), 703.
doi: 10.1137/07068881X. |
[46] |
G. Peyré, Sparse modeling of textures,, J. Math. Imaging Vis., 34 (2009), 17.
doi: 10.1007/s10851-008-0120-3. |
[47] |
G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems,, In, 5304 (2008), 57. Google Scholar |
[48] |
G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity,, SIAM Journal on Imaging Sciences, (2010).
|
[49] |
M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements,, Commun. on Pure and Appl. Math., 61 (2008), 1025.
doi: 10.1002/cpa.20227. |
[50] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[51] |
J. Shanks, Computation of the fast walsh-fourier transform,, IEEE Transactions on Computers, C-18 (1969), 457.
doi: 10.1109/T-C.1969.222685. |
[52] |
S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing,, International Journal of Computer Vision, 23 (1997), 45.
doi: 10.1023/A:1007963824710. |
[53] |
A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds,, IEEE Trans. Image Processing, 16 (2007), 1628.
doi: 10.1109/TIP.2007.894253. |
[54] |
A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes,, Journal of Machine Learning Research, 9 (2008), 1711.
|
[55] |
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,, In, (1998), 839. Google Scholar |
[56] |
D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506.
doi: 10.1109/TPAMI.2005.87. |
[57] |
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,, Journal of Optimization Theory and Applications, 109 (2001), 475.
doi: 10.1023/A:1017501703105. |
[58] |
L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization,, In, (2000), 479. Google Scholar |
[59] |
L. P. Yaroslavsky, "Digital Picture Processing - An Introduction,", Springer, (1985).
|
[60] |
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253.
doi: 10.1137/090746379. |
[61] |
D. Zhou and B. Scholkopf, Regularization on discrete spaces,, In, 3663 (2005), 361. Google Scholar |
show all references
References:
[1] |
A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering,, ACM Transactions on Graphics, 28 (2009). Google Scholar |
[2] |
J.-F. Aujol, Some first-order algorithms for total variation based image restoration,, J. Math. Imaging Vis., 34 (2009), 307.
doi: 10.1007/s10851-009-0149-y. |
[3] |
J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view,, SIAM Journal on Mathematical Analysis, 42 (2010), 1246.
doi: 10.1137/080743883. |
[4] |
M. Avriel, "Nonlinear Programming: Analysis and Methods,", Dover Publishing, (2003).
|
[5] |
C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels,, IEEE Trans. Image Processing, 10 (2001), 1200.
doi: 10.1109/83.935036. |
[6] |
J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration,, In, IV (2004), 1. Google Scholar |
[7] |
M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting,, In, (2000), 417. Google Scholar |
[8] |
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one,, Multiscale Modeling and Simulation, 4 (2005), 490.
doi: 10.1137/040616024. |
[9] |
A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation,", Preprint CMLA 2006-22, (2006), 2006. Google Scholar |
[10] |
A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking,, IEEE Trans. Image Proc., 18 (2009), 1192.
doi: 10.1109/TIP.2009.2017171. |
[11] |
E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), 5406.
doi: 10.1109/TIT.2006.885507. |
[12] |
A. Chambolle, An algorithm for total variation minimization and applications,, Journal of Mathematical Imaging and Vision, 20 (2004), 89.
|
[13] |
T. Chan and J. Shen, Mathematical models for local nontexture inpaintings,, SIAM J. Appl. Math, 62 (2002), 1019.
doi: 10.1137/S0036139900368844. |
[14] |
P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation,", Cambridge University Press, (1989).
|
[15] |
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. of the Nat. Ac. of Science, 102 (2005), 7426.
doi: 10.1073/pnas.0500334102. |
[16] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Modeling & Simulation, 4 (2005), 1168.
doi: 10.1137/050626090. |
[17] |
A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting,, IEEE Transactions on Image Processing, 13 (2004), 1200.
doi: 10.1109/TIP.2004.833105. |
[18] |
D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection,, Journal of Mult. System and Sig. Proc., 18 (2007), 103.
doi: 10.1007/s11045-007-0018-z. |
[19] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413.
doi: 10.1002/cpa.20042. |
[20] |
D. Donoho, Compressed sensing,, IEEE Transactions on Information Theory, 52 (2006), 1289.
doi: 10.1109/TIT.2006.871582. |
[21] |
D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage,, Biometrika, 81 (1994), 425.
doi: 10.1093/biomet/81.3.425. |
[22] |
D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,, Preprint, (2006). Google Scholar |
[23] |
M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples',, In, (2007), 117. Google Scholar |
[24] |
A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling,, In, (1033). Google Scholar |
[25] |
M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries,, IEEE Trans. on Image Processing, 15 (2006), 3736.
doi: 10.1109/TIP.2006.881969. |
[26] |
M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA),, Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340.
doi: 10.1016/j.acha.2005.03.005. |
[27] |
A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing,, IEEE Tr. on Image Processing, 17 (2008), 1047.
doi: 10.1109/TIP.2008.924284. |
[28] |
G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images,", IMA Preprint Series # 2264, (2264). Google Scholar |
[29] |
M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations,, The Computer Journal, 52 (2009), 64.
doi: 10.1093/comjnl/bxm055. |
[30] |
S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution,, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47.
doi: 10.1002/ima.20007. |
[31] |
W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution,, IEEE Computer Graphics and Applications, 22 (2002), 56.
doi: 10.1109/38.988747. |
[32] |
G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization,", UCLA CAM Report 06-57, (2006), 06. Google Scholar |
[33] |
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation,, SIAM Multiscale Modeling and Simulation, 6 (2007), 595.
doi: 10.1137/060669358. |
[34] |
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing,, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005.
|
[35] |
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals,, SIAM Mult. Model. and Simul., 4 (2005), 1091.
doi: 10.1137/050622249. |
[36] |
M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods,, IEEE Signal Processing Letters, 12 (2005), 839.
doi: 10.1109/LSP.2005.859509. |
[37] |
J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration,, IEEE Trans. Image Proc., 17 (2008), 53.
doi: 10.1109/TIP.2007.911828. |
[38] |
F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis,, SIAM Journal on Numer. An., 39 (2001), 1.
|
[39] |
S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition,, Academic Press, (2008).
|
[40] |
S. Masnou, Disocclusion: A variational approach using level lines,, IEEE Trans. Image Processing, 11 (2002), 68.
doi: 10.1109/83.982815. |
[41] |
M. Mignotte, A non-local regularization strategy for image deconvolution,, Pattern Recognition Letters, 29 (2008), 2206.
doi: 10.1016/j.patrec.2008.08.004. |
[42] |
Y. Nesterov, Smooth minimization of non-smooth functions,, Math. Program. Ser. A, 103 (2005), 127.
doi: 10.1007/s10107-004-0552-5. |
[43] |
B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images,, Nature, 381 (1996), 607.
doi: 10.1038/381607a0. |
[44] |
S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview,, IEEE Signal Processing Magazine, 20 (2003), 21.
doi: 10.1109/MSP.2003.1203207. |
[45] |
G. Peyré, Image processing with non-local spectral bases,, SIAM Multiscale Modeling and Simulation, 7 (2008), 703.
doi: 10.1137/07068881X. |
[46] |
G. Peyré, Sparse modeling of textures,, J. Math. Imaging Vis., 34 (2009), 17.
doi: 10.1007/s10851-008-0120-3. |
[47] |
G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems,, In, 5304 (2008), 57. Google Scholar |
[48] |
G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity,, SIAM Journal on Imaging Sciences, (2010).
|
[49] |
M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements,, Commun. on Pure and Appl. Math., 61 (2008), 1025.
doi: 10.1002/cpa.20227. |
[50] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[51] |
J. Shanks, Computation of the fast walsh-fourier transform,, IEEE Transactions on Computers, C-18 (1969), 457.
doi: 10.1109/T-C.1969.222685. |
[52] |
S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing,, International Journal of Computer Vision, 23 (1997), 45.
doi: 10.1023/A:1007963824710. |
[53] |
A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds,, IEEE Trans. Image Processing, 16 (2007), 1628.
doi: 10.1109/TIP.2007.894253. |
[54] |
A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes,, Journal of Machine Learning Research, 9 (2008), 1711.
|
[55] |
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images,, In, (1998), 839. Google Scholar |
[56] |
D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506.
doi: 10.1109/TPAMI.2005.87. |
[57] |
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization,, Journal of Optimization Theory and Applications, 109 (2001), 475.
doi: 10.1023/A:1017501703105. |
[58] |
L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization,, In, (2000), 479. Google Scholar |
[59] |
L. P. Yaroslavsky, "Digital Picture Processing - An Introduction,", Springer, (1985).
|
[60] |
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253.
doi: 10.1137/090746379. |
[61] |
D. Zhou and B. Scholkopf, Regularization on discrete spaces,, In, 3663 (2005), 361. Google Scholar |
[1] |
Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025 |
[2] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[3] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[4] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
[5] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 |
[6] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[7] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[8] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[9] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[10] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[11] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[12] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[13] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[14] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[15] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[16] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[17] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[18] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[19] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[20] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]