\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-local regularization of inverse problems

Abstract / Introduction Related Papers Cited by
  • This article proposes a new framework to regularize imaging linear inverse problems using an adaptive non-local energy. A non-local graph is optimized to match the structures of the image to recover. This allows a better reconstruction of geometric edges and textures present in natural images. A fast algorithm computes iteratively both the solution of the regularization process and the non-local graph adapted to this solution. The graph adaptation is efficient to solve inverse problems with randomized measurements such as inpainting random pixels or compressive sensing recovery. Our non-local regularization gives state-of-the-art results for this class of inverse problems. On more challenging problems such as image super-resolution, our method gives results comparable to sparse regularization in a translation invariant wavelet frame.
    Mathematics Subject Classification: Primary: 68U10, 94A08; Secondary: 49N45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering, ACM Transactions on Graphics, 28, 2009.

    [2]

    J.-F. Aujol, Some first-order algorithms for total variation based image restoration, J. Math. Imaging Vis., 34 (2009), 307-327.doi: 10.1007/s10851-009-0149-y.

    [3]

    J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view, SIAM Journal on Mathematical Analysis, 42 (2010), 1246-1285.doi: 10.1137/080743883.

    [4]

    M. Avriel, "Nonlinear Programming: Analysis and Methods," Dover Publishing, 2003.

    [5]

    C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. Image Processing, 10 (2001), 1200-1211.doi: 10.1109/83.935036.

    [6]

    J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration, In "Proc. of ECCV04," pages Vol IV, 1-13. Springer-Verlag, 2004.

    [7]

    M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, In "Siggraph 2000," pages 417-424, 2000.

    [8]

    A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530.doi: 10.1137/040616024.

    [9]

    A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation," Preprint CMLA 2006-22, 2006.

    [10]

    A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking, IEEE Trans. Image Proc., 18 (2009), 1192-1202.doi: 10.1109/TIP.2009.2017171.

    [11]

    E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52 (2006), 5406-5425.doi: 10.1109/TIT.2006.885507.

    [12]

    A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.

    [13]

    T. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math, 62 (2002), 1019-1043.doi: 10.1137/S0036139900368844.

    [14]

    P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation," Cambridge University Press, Cambridge, 1989.

    [15]

    R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. of the Nat. Ac. of Science, 102 (2005), 7426-7431.doi: 10.1073/pnas.0500334102.

    [16]

    P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, 4 (2005), 1168-1200.doi: 10.1137/050626090.

    [17]

    A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, 13 (2004), 1200-1212.doi: 10.1109/TIP.2004.833105.

    [18]

    D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection, Journal of Mult. System and Sig. Proc., 18 (2007), 103-121.doi: 10.1007/s11045-007-0018-z.

    [19]

    I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1541.doi: 10.1002/cpa.20042.

    [20]

    D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.doi: 10.1109/TIT.2006.871582.

    [21]

    D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994), 425-455.doi: 10.1093/biomet/81.3.425.

    [22]

    D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, Preprint, 2006.

    [23]

    M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples', In "ICIAR07," pages 117-130, 2007.

    [24]

    A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, In "Proc. of ICCV '99," page 1033. IEEE Computer Society, 1999.

    [25]

    M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. on Image Processing, 15 (2006), 3736-3745.doi: 10.1109/TIP.2006.881969.

    [26]

    M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340-358.doi: 10.1016/j.acha.2005.03.005.

    [27]

    A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing, IEEE Tr. on Image Processing, 17 (2008), 1047-1060.doi: 10.1109/TIP.2008.924284.

    [28]

    G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images," IMA Preprint Series # 2264, 2009.

    [29]

    M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations, The Computer Journal, 52 (2009), 64-79.doi: 10.1093/comjnl/bxm055.

    [30]

    S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47-57.doi: 10.1002/ima.20007.

    [31]

    W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution, IEEE Computer Graphics and Applications, 22 (2002), 56-65.doi: 10.1109/38.988747.

    [32]

    G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization," UCLA CAM Report 06-57, 2006.

    [33]

    G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, SIAM Multiscale Modeling and Simulation, 6 (2007), 595-630.doi: 10.1137/060669358.

    [34]

    G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005-1028.

    [35]

    S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, SIAM Mult. Model. and Simul., 4 (2005), 1091-1115.doi: 10.1137/050622249.

    [36]

    M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Processing Letters, 12 (2005), 839-842.doi: 10.1109/LSP.2005.859509.

    [37]

    J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Proc., 17 (2008), 53-69.doi: 10.1109/TIP.2007.911828.

    [38]

    F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis, SIAM Journal on Numer. An., 39 (2001), 1-37.

    [39]

    S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition, Academic Press, San Diego, 2008.

    [40]

    S. Masnou, Disocclusion: A variational approach using level lines, IEEE Trans. Image Processing, 11 (2002), 68-76.doi: 10.1109/83.982815.

    [41]

    M. Mignotte, A non-local regularization strategy for image deconvolution, Pattern Recognition Letters, 29 (2008), 2206-2212.doi: 10.1016/j.patrec.2008.08.004.

    [42]

    Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. Ser. A, 103 (2005), 127-152.doi: 10.1007/s10107-004-0552-5.

    [43]

    B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images, Nature, 381 (1996), 607-609.doi: 10.1038/381607a0.

    [44]

    S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview, IEEE Signal Processing Magazine, 20 (2003), 21-36.doi: 10.1109/MSP.2003.1203207.

    [45]

    G. Peyré, Image processing with non-local spectral bases, SIAM Multiscale Modeling and Simulation, 7 (2008), 703-730.doi: 10.1137/07068881X.

    [46]

    G. Peyré, Sparse modeling of textures, J. Math. Imaging Vis., 34 (2009), 17-31.doi: 10.1007/s10851-008-0120-3.

    [47]

    G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems, In "D. A. Forsyth, P. H. S. Torr and A. Zisserman, editors, ECCV'08," volume 5304 of "Lecture Notes in Computer Science," pages 57-68. Springer, 2008.

    [48]

    G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity, SIAM Journal on Imaging Sciences, to appear, 2010.

    [49]

    M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements, Commun. on Pure and Appl. Math., 61 (2008), 1025-1045.doi: 10.1002/cpa.20227.

    [50]

    L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.

    [51]

    J. Shanks, Computation of the fast walsh-fourier transform, IEEE Transactions on Computers, C-18 (1969), 457-459.doi: 10.1109/T-C.1969.222685.

    [52]

    S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing, International Journal of Computer Vision, 23 (1997), 45-78.doi: 10.1023/A:1007963824710.

    [53]

    A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds, IEEE Trans. Image Processing, 16 (2007), 1628-1636.doi: 10.1109/TIP.2007.894253.

    [54]

    A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes, Journal of Machine Learning Research, 9 (2008), 1711-1739.

    [55]

    C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, In "Proc. of ICCV '98," pages 839-846, 1998.

    [56]

    D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506-517.doi: 10.1109/TPAMI.2005.87.

    [57]

    P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494.doi: 10.1023/A:1017501703105.

    [58]

    L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization, In "Proc. of SIGGRAPH '00," pages 479-488, ACM Press/Addison-Wesley Publishing Co., 2000.

    [59]

    L. P. Yaroslavsky, "Digital Picture Processing - An Introduction," Springer, Berlin, 1985.

    [60]

    X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276.doi: 10.1137/090746379.

    [61]

    D. Zhou and B. Scholkopf, Regularization on discrete spaces, In "W. G. Kropatsch, R. Sablatnig and A. Hanbury, editors, German Pattern Recognition Symposium," volume 3663, pages 361-368, Springer, 2005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return