May  2011, 5(2): 511-530. doi: 10.3934/ipi.2011.5.511

Non-local regularization of inverse problems

1. 

Ceremade, Université Paris-Dauphine, 75775 Paris Cedex 16, France, France

2. 

GREYC, Université de Caen, 14050 Caen Cedex, France

Received  October 2009 Revised  September 2010 Published  May 2011

This article proposes a new framework to regularize imaging linear inverse problems using an adaptive non-local energy. A non-local graph is optimized to match the structures of the image to recover. This allows a better reconstruction of geometric edges and textures present in natural images. A fast algorithm computes iteratively both the solution of the regularization process and the non-local graph adapted to this solution. The graph adaptation is efficient to solve inverse problems with randomized measurements such as inpainting random pixels or compressive sensing recovery. Our non-local regularization gives state-of-the-art results for this class of inverse problems. On more challenging problems such as image super-resolution, our method gives results comparable to sparse regularization in a translation invariant wavelet frame.
Citation: Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511
References:
[1]

A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering, ACM Transactions on Graphics, 28, 2009. Google Scholar

[2]

J.-F. Aujol, Some first-order algorithms for total variation based image restoration, J. Math. Imaging Vis., 34 (2009), 307-327. doi: 10.1007/s10851-009-0149-y.  Google Scholar

[3]

J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view, SIAM Journal on Mathematical Analysis, 42 (2010), 1246-1285. doi: 10.1137/080743883.  Google Scholar

[4]

M. Avriel, "Nonlinear Programming: Analysis and Methods," Dover Publishing, 2003.  Google Scholar

[5]

C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. Image Processing, 10 (2001), 1200-1211. doi: 10.1109/83.935036.  Google Scholar

[6]

J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration, In "Proc. of ECCV04," pages Vol IV, 1-13. Springer-Verlag, 2004. Google Scholar

[7]

M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, In "Siggraph 2000," pages 417-424, 2000. Google Scholar

[8]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530. doi: 10.1137/040616024.  Google Scholar

[9]

A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation," Preprint CMLA 2006-22, 2006. Google Scholar

[10]

A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking, IEEE Trans. Image Proc., 18 (2009), 1192-1202. doi: 10.1109/TIP.2009.2017171.  Google Scholar

[11]

E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52 (2006), 5406-5425. doi: 10.1109/TIT.2006.885507.  Google Scholar

[12]

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.  Google Scholar

[13]

T. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math, 62 (2002), 1019-1043. doi: 10.1137/S0036139900368844.  Google Scholar

[14]

P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation," Cambridge University Press, Cambridge, 1989.  Google Scholar

[15]

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. of the Nat. Ac. of Science, 102 (2005), 7426-7431. doi: 10.1073/pnas.0500334102.  Google Scholar

[16]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, 4 (2005), 1168-1200. doi: 10.1137/050626090.  Google Scholar

[17]

A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, 13 (2004), 1200-1212. doi: 10.1109/TIP.2004.833105.  Google Scholar

[18]

D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection, Journal of Mult. System and Sig. Proc., 18 (2007), 103-121. doi: 10.1007/s11045-007-0018-z.  Google Scholar

[19]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1541. doi: 10.1002/cpa.20042.  Google Scholar

[20]

D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306. doi: 10.1109/TIT.2006.871582.  Google Scholar

[21]

D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994), 425-455. doi: 10.1093/biomet/81.3.425.  Google Scholar

[22]

D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, Preprint, 2006. Google Scholar

[23]

M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples', In "ICIAR07," pages 117-130, 2007. Google Scholar

[24]

A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, In "Proc. of ICCV '99," page 1033. IEEE Computer Society, 1999. Google Scholar

[25]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. on Image Processing, 15 (2006), 3736-3745. doi: 10.1109/TIP.2006.881969.  Google Scholar

[26]

M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340-358. doi: 10.1016/j.acha.2005.03.005.  Google Scholar

[27]

A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing, IEEE Tr. on Image Processing, 17 (2008), 1047-1060. doi: 10.1109/TIP.2008.924284.  Google Scholar

[28]

G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images," IMA Preprint Series # 2264, 2009. Google Scholar

[29]

M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations, The Computer Journal, 52 (2009), 64-79. doi: 10.1093/comjnl/bxm055.  Google Scholar

[30]

S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47-57. doi: 10.1002/ima.20007.  Google Scholar

[31]

W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution, IEEE Computer Graphics and Applications, 22 (2002), 56-65. doi: 10.1109/38.988747.  Google Scholar

[32]

G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization," UCLA CAM Report 06-57, 2006. Google Scholar

[33]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, SIAM Multiscale Modeling and Simulation, 6 (2007), 595-630. doi: 10.1137/060669358.  Google Scholar

[34]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005-1028.  Google Scholar

[35]

S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, SIAM Mult. Model. and Simul., 4 (2005), 1091-1115. doi: 10.1137/050622249.  Google Scholar

[36]

M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Processing Letters, 12 (2005), 839-842. doi: 10.1109/LSP.2005.859509.  Google Scholar

[37]

J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Proc., 17 (2008), 53-69. doi: 10.1109/TIP.2007.911828.  Google Scholar

[38]

F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis, SIAM Journal on Numer. An., 39 (2001), 1-37.  Google Scholar

[39]

S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition, Academic Press, San Diego, 2008.  Google Scholar

[40]

S. Masnou, Disocclusion: A variational approach using level lines, IEEE Trans. Image Processing, 11 (2002), 68-76. doi: 10.1109/83.982815.  Google Scholar

[41]

M. Mignotte, A non-local regularization strategy for image deconvolution, Pattern Recognition Letters, 29 (2008), 2206-2212. doi: 10.1016/j.patrec.2008.08.004.  Google Scholar

[42]

Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. Ser. A, 103 (2005), 127-152. doi: 10.1007/s10107-004-0552-5.  Google Scholar

[43]

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images, Nature, 381 (1996), 607-609. doi: 10.1038/381607a0.  Google Scholar

[44]

S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview, IEEE Signal Processing Magazine, 20 (2003), 21-36. doi: 10.1109/MSP.2003.1203207.  Google Scholar

[45]

G. Peyré, Image processing with non-local spectral bases, SIAM Multiscale Modeling and Simulation, 7 (2008), 703-730. doi: 10.1137/07068881X.  Google Scholar

[46]

G. Peyré, Sparse modeling of textures, J. Math. Imaging Vis., 34 (2009), 17-31. doi: 10.1007/s10851-008-0120-3.  Google Scholar

[47]

G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems, In "D. A. Forsyth, P. H. S. Torr and A. Zisserman, editors, ECCV'08," volume 5304 of "Lecture Notes in Computer Science," pages 57-68. Springer, 2008. Google Scholar

[48]

G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity, SIAM Journal on Imaging Sciences, to appear, 2010.  Google Scholar

[49]

M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements, Commun. on Pure and Appl. Math., 61 (2008), 1025-1045. doi: 10.1002/cpa.20227.  Google Scholar

[50]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[51]

J. Shanks, Computation of the fast walsh-fourier transform, IEEE Transactions on Computers, C-18 (1969), 457-459. doi: 10.1109/T-C.1969.222685.  Google Scholar

[52]

S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing, International Journal of Computer Vision, 23 (1997), 45-78. doi: 10.1023/A:1007963824710.  Google Scholar

[53]

A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds, IEEE Trans. Image Processing, 16 (2007), 1628-1636. doi: 10.1109/TIP.2007.894253.  Google Scholar

[54]

A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes, Journal of Machine Learning Research, 9 (2008), 1711-1739.  Google Scholar

[55]

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, In "Proc. of ICCV '98," pages 839-846, 1998. Google Scholar

[56]

D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506-517. doi: 10.1109/TPAMI.2005.87.  Google Scholar

[57]

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494. doi: 10.1023/A:1017501703105.  Google Scholar

[58]

L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization, In "Proc. of SIGGRAPH '00," pages 479-488, ACM Press/Addison-Wesley Publishing Co., 2000. Google Scholar

[59]

L. P. Yaroslavsky, "Digital Picture Processing - An Introduction," Springer, Berlin, 1985.  Google Scholar

[60]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276. doi: 10.1137/090746379.  Google Scholar

[61]

D. Zhou and B. Scholkopf, Regularization on discrete spaces, In "W. G. Kropatsch, R. Sablatnig and A. Hanbury, editors, German Pattern Recognition Symposium," volume 3663, pages 361-368, Springer, 2005. Google Scholar

show all references

References:
[1]

A. Adams, N. Gelfand, J. Dolson and M. Levoy, Gaussian KD-trees for fast high-dimensional filtering, ACM Transactions on Graphics, 28, 2009. Google Scholar

[2]

J.-F. Aujol, Some first-order algorithms for total variation based image restoration, J. Math. Imaging Vis., 34 (2009), 307-327. doi: 10.1007/s10851-009-0149-y.  Google Scholar

[3]

J.-F. Aujol, S. Ladjal and S. Masnou, Exemplar-based inpainting from a variational point of view, SIAM Journal on Mathematical Analysis, 42 (2010), 1246-1285. doi: 10.1137/080743883.  Google Scholar

[4]

M. Avriel, "Nonlinear Programming: Analysis and Methods," Dover Publishing, 2003.  Google Scholar

[5]

C. Ballester, M. Bertalmìo, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, IEEE Trans. Image Processing, 10 (2001), 1200-1211. doi: 10.1109/83.935036.  Google Scholar

[6]

J. Bect, L. Blanc Féraud, G. Aubert and A. Chambolle, A $\l_1$-unified variational framework for image restoration, In "Proc. of ECCV04," pages Vol IV, 1-13. Springer-Verlag, 2004. Google Scholar

[7]

M. Bertalmìo, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, In "Siggraph 2000," pages 417-424, 2000. Google Scholar

[8]

A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4 (2005), 490-530. doi: 10.1137/040616024.  Google Scholar

[9]

A. Buades, B. Coll and J-M. Morel, "Image Enhancement By Non-local Reverse Heat Equation," Preprint CMLA 2006-22, 2006. Google Scholar

[10]

A. Buades, B. Coll, J-M. Morel and C. Sbert, Self similarity driven demosaicking, IEEE Trans. Image Proc., 18 (2009), 1192-1202. doi: 10.1109/TIP.2009.2017171.  Google Scholar

[11]

E. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52 (2006), 5406-5425. doi: 10.1109/TIT.2006.885507.  Google Scholar

[12]

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.  Google Scholar

[13]

T. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math, 62 (2002), 1019-1043. doi: 10.1137/S0036139900368844.  Google Scholar

[14]

P. G. Ciarlet, "Introduction to Numerical Linear Algebra and Optimisation," Cambridge University Press, Cambridge, 1989.  Google Scholar

[15]

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. of the Nat. Ac. of Science, 102 (2005), 7426-7431. doi: 10.1073/pnas.0500334102.  Google Scholar

[16]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, 4 (2005), 1168-1200. doi: 10.1137/050626090.  Google Scholar

[17]

A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, 13 (2004), 1200-1212. doi: 10.1109/TIP.2004.833105.  Google Scholar

[18]

D. Datsenko and M. Elad, Example-based single image super-resolution: A global map approach with outlier rejection, Journal of Mult. System and Sig. Proc., 18 (2007), 103-121. doi: 10.1007/s11045-007-0018-z.  Google Scholar

[19]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1541. doi: 10.1002/cpa.20042.  Google Scholar

[20]

D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306. doi: 10.1109/TIT.2006.871582.  Google Scholar

[21]

D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994), 425-455. doi: 10.1093/biomet/81.3.425.  Google Scholar

[22]

D. Donoho, Y. Tsaig, I. Drori and J-L. Starck, Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit, Preprint, 2006. Google Scholar

[23]

M. Ebrahimi and E. R. Vrscay, Solving the inverse problem of image zooming using 'self examples', In "ICIAR07," pages 117-130, 2007. Google Scholar

[24]

A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, In "Proc. of ICCV '99," page 1033. IEEE Computer Society, 1999. Google Scholar

[25]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. on Image Processing, 15 (2006), 3736-3745. doi: 10.1109/TIP.2006.881969.  Google Scholar

[26]

M. Elad, J.-L Starck, D. Donoho and P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Journal on Applied and Computational Harmonic Analysis, 19 (2005), 340-358. doi: 10.1016/j.acha.2005.03.005.  Google Scholar

[27]

A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing, IEEE Tr. on Image Processing, 17 (2008), 1047-1060. doi: 10.1109/TIP.2008.924284.  Google Scholar

[28]

G. Facciolo, P. Arias, V. Caselles and G. Sapiro, "Exemplar-based Interpolation of Sparsely Sampled Images," IMA Preprint Series # 2264, 2009. Google Scholar

[29]

M. J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations, The Computer Journal, 52 (2009), 64-79. doi: 10.1093/comjnl/bxm055.  Google Scholar

[30]

S. Farsiu, D. Robinson, M. Elad and P. Milanfar, Advances and challenges in super-resolution, Int. Journal of Imaging Sys. and Tech., 14 (2004), 47-57. doi: 10.1002/ima.20007.  Google Scholar

[31]

W. T. Freeman, T. R. Jones and E. C. Pasztor, Example-based super-resolution, IEEE Computer Graphics and Applications, 22 (2002), 56-65. doi: 10.1109/38.988747.  Google Scholar

[32]

G. Gilboa, J. Darbon, S. Osher and T. F. Chan, "Nonlocal Convex Functionals for Image Regularization," UCLA CAM Report 06-57, 2006. Google Scholar

[33]

G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, SIAM Multiscale Modeling and Simulation, 6 (2007), 595-630. doi: 10.1137/060669358.  Google Scholar

[34]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, SIAM Multiscale Modeling & Simulation, 7 (2008), 1005-1028.  Google Scholar

[35]

S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, SIAM Mult. Model. and Simul., 4 (2005), 1091-1115. doi: 10.1137/050622249.  Google Scholar

[36]

M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Processing Letters, 12 (2005), 839-842. doi: 10.1109/LSP.2005.859509.  Google Scholar

[37]

J. Mairal, M. Elad and G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Proc., 17 (2008), 53-69. doi: 10.1109/TIP.2007.911828.  Google Scholar

[38]

F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical and numerical analysis, SIAM Journal on Numer. An., 39 (2001), 1-37.  Google Scholar

[39]

S. Mallat, "A Wavelet Tour of Signal Processing," 3rd edition, Academic Press, San Diego, 2008.  Google Scholar

[40]

S. Masnou, Disocclusion: A variational approach using level lines, IEEE Trans. Image Processing, 11 (2002), 68-76. doi: 10.1109/83.982815.  Google Scholar

[41]

M. Mignotte, A non-local regularization strategy for image deconvolution, Pattern Recognition Letters, 29 (2008), 2206-2212. doi: 10.1016/j.patrec.2008.08.004.  Google Scholar

[42]

Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. Ser. A, 103 (2005), 127-152. doi: 10.1007/s10107-004-0552-5.  Google Scholar

[43]

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code for natural images, Nature, 381 (1996), 607-609. doi: 10.1038/381607a0.  Google Scholar

[44]

S. C. Park, M. K. Park and M. G. Kang, Super-resolution image reconstruction: A technical overview, IEEE Signal Processing Magazine, 20 (2003), 21-36. doi: 10.1109/MSP.2003.1203207.  Google Scholar

[45]

G. Peyré, Image processing with non-local spectral bases, SIAM Multiscale Modeling and Simulation, 7 (2008), 703-730. doi: 10.1137/07068881X.  Google Scholar

[46]

G. Peyré, Sparse modeling of textures, J. Math. Imaging Vis., 34 (2009), 17-31. doi: 10.1007/s10851-008-0120-3.  Google Scholar

[47]

G. Peyré, S. Bougleux and L. D. Cohen, Non-local regularization of inverse problems, In "D. A. Forsyth, P. H. S. Torr and A. Zisserman, editors, ECCV'08," volume 5304 of "Lecture Notes in Computer Science," pages 57-68. Springer, 2008. Google Scholar

[48]

G. Peyré, J. Fadili and J-L. Starck, Learning the morphological diversity, SIAM Journal on Imaging Sciences, to appear, 2010.  Google Scholar

[49]

M. Rudelson and R. Vershynin, On sparse reconstruction from fourier and gaussian measurements, Commun. on Pure and Appl. Math., 61 (2008), 1025-1045. doi: 10.1002/cpa.20227.  Google Scholar

[50]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[51]

J. Shanks, Computation of the fast walsh-fourier transform, IEEE Transactions on Computers, C-18 (1969), 457-459. doi: 10.1109/T-C.1969.222685.  Google Scholar

[52]

S. M. Smith and J. M. Brady, SUSAN - a new approach to low level image processing, International Journal of Computer Vision, 23 (1997), 45-78. doi: 10.1023/A:1007963824710.  Google Scholar

[53]

A. Spira, R. Kimmel and N. Sochen, A short time beltrami kernel for smoothing images and manifolds, IEEE Trans. Image Processing, 16 (2007), 1628-1636. doi: 10.1109/TIP.2007.894253.  Google Scholar

[54]

A. D. Szlam, M. Maggioni and R. R. Coifman, Regularization on graphs with function-adapted diffusion processes, Journal of Machine Learning Research, 9 (2008), 1711-1739.  Google Scholar

[55]

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, In "Proc. of ICCV '98," pages 839-846, 1998. Google Scholar

[56]

D. Tschumperlé and R. Deriche, Vector-valued image regularization with PDEs: Acommon framework for different applications, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 506-517. doi: 10.1109/TPAMI.2005.87.  Google Scholar

[57]

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494. doi: 10.1023/A:1017501703105.  Google Scholar

[58]

L-Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization, In "Proc. of SIGGRAPH '00," pages 479-488, ACM Press/Addison-Wesley Publishing Co., 2000. Google Scholar

[59]

L. P. Yaroslavsky, "Digital Picture Processing - An Introduction," Springer, Berlin, 1985.  Google Scholar

[60]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276. doi: 10.1137/090746379.  Google Scholar

[61]

D. Zhou and B. Scholkopf, Regularization on discrete spaces, In "W. G. Kropatsch, R. Sablatnig and A. Hanbury, editors, German Pattern Recognition Symposium," volume 3663, pages 361-368, Springer, 2005. Google Scholar

[1]

Wei Wan, Weihong Guo, Jun Liu, Haiyang Huang. Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank. Inverse Problems & Imaging, 2020, 14 (2) : 339-361. doi: 10.3934/ipi.2020015

[2]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

[3]

Fatimzehrae Ait Bella, Aissam Hadri, Abdelilah Hakim, Amine Laghrib. A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations & Control Theory, 2021, 10 (3) : 633-655. doi: 10.3934/eect.2020084

[4]

Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems & Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058

[5]

Hong Jiang, Wei Deng, Zuowei Shen. Surveillance video processing using compressive sensing. Inverse Problems & Imaging, 2012, 6 (2) : 201-214. doi: 10.3934/ipi.2012.6.201

[6]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[7]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[8]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[9]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[10]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[11]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[12]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[13]

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132

[14]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[15]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[16]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks & Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[17]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[18]

Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465

[19]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[20]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (142)
  • HTML views (0)
  • Cited by (53)

[Back to Top]