• Previous Article
    A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation
  • IPI Home
  • This Issue
  • Next Article
    Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes
August  2011, 5(3): 619-643. doi: 10.3934/ipi.2011.5.619

Errors of regularisation under range inclusions using variable Hilbert scales

1. 

Centre for Mathematics and its Applications, The Australian National University, Canberra ACT, 0200, Australia

2. 

Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany

Received  May 2010 Revised  June 2011 Published  August 2011

Based on the variable Hilbert scale interpolation inequality, bounds for the error of regularisation methods are derived under range inclusions. In this context, new formulae for the modulus of continuity of the inverse of bounded operators with non-closed range are given. Even if one can show the equivalence of this approach to the version used previously in the literature, the new formulae and corresponding conditions are simpler than the former ones. Several examples from image processing and spectral enhancement illustrate how the new error bounds can be applied.
Citation: Markus Hegland, Bernd Hofmann. Errors of regularisation under range inclusions using variable Hilbert scales. Inverse Problems and Imaging, 2011, 5 (3) : 619-643. doi: 10.3934/ipi.2011.5.619
References:
[1]

K. Atkinson and W. Han, "Theoretical Numerical Analysis. A Functional Analysis Framework," 3rd edition, Texts in Applied Mathematics, 39, Springer, Dordrecht, 2009.

[2]

A. B. Bakushinsky and M. Yu. Kokurin, "Iterative Methods for Approximate Solution of Inverse Problems," Mathematics and its Applications (New York), 577, Springer, Dordrecht, 2004.

[3]

J. Baumeister, "Stable Solution of Inverse Problems," Friedr. Vieweg & Sohn, Braunschweig, 1987.

[4]

M. Bertero and P. Boccacci, "Introduction to Inverse Problems in Imaging," Institute of Physics Publishing, Bristol, 1998.

[5]

R. Bhatia, "Matrix Analysis," Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.

[6]

A. Böttcher, B. Hofmann, U. Tautenhahn and M. Yamamoto, Convergence rates for Tikhonov regularization from different kinds of smoothness conditions, Appl. Anal., 85 (2006), 555-578.

[7]

J. Cheng and M. Yamamoto, One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization, Inverse Problems, 16 (2000), L31-L38.

[8]

D. Düvelmeyer, B. Hofmann and M. Yamamoto, Range inclusions and approximate source conditions with general benchmark functions, Numer. Funct. Anal. Optim., 28 (2007), 1245-1261.

[9]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.

[10]

J. Flemming, B. Hofmann and P. Mathé, Sharp converse results for the regularization error using distance functions, Inverse Problems, 27 (2011), 025006 (18 pp).

[11]

C. W. Groetsch, "The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind," Pitman, Boston, MA, 1984.

[12]

M. Hanke, Regularization with differential operators: An iterative approach, Numer. Funct. Anal. & Optimiz., 13 (1992), 523-540. doi: 10.1080/01630569208816497.

[13]

M. Hegland, An optimal order regularization method which does not use additional smoothness assumptions, SIAM J. Numer. Anal., 29 (1992), 1446-1461.

[14]

_____, Variable Hilbert scales and their interpolation inequalities with applications to Tikhonov regularization, Appl. Anal., 59 (1995), 207-223.

[15]

_____, Error bounds for spectral enhancement which are based on variable Hilbert scale inequalities, J. Integral Equations Appl., 22 (2010), 285-312.

[16]

M. Hegland and B. Hofmann, Errors of regularisation under range inclusions using variable Hilbert scales,, 2010. Available from: \url{http://arxiv.org/abs/1005.3883}., (). 

[17]

B. Hofmann, Approximate source conditions in Tikhonov-Phillips regularization and consequences for inverse problems with multiplication operators, Mathematical Methods in the Applied Sciences, 29 (2006), 351-371. doi: 10.1002/mma.686.

[18]

B. Hofmann and P. Mathé, Analysis of profile functions for general linear regularization methods, SIAM J. Numer. Anal., 45 (2007), 1122-1141.

[19]

B. Hofmann, P. Mathé and M. Schieck, Modulus of continuity for conditionally stable ill-posed problems in Hilbert space, J. Inverse Ill-Posed Probl., 16 (2008), 567-585.

[20]

B. Hofmann, P. Mathé and H. von Weizsäcker, Regularization in Hilbert space under unbounded operators and general source conditions, Inverse Problems, 25 (2009), 115013 (15 pp).

[21]

B. Hofmann and M. Yamamoto, Convergence rates for Tikhonov regularization based on range inclusions, Inverse Problems, 21 (2005), 805-820.

[22]

T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13 (1997), 1279-1299.

[23]

_____, Regularization of exponentially ill-posed problems, Numer. Funct. Anal. Optim., 21 (2000), 439-464.

[24]

V. K. Ivanov and T. I. Koroljuk, The estimation of errors in the solution of linear ill-posed problems, Ž. Vyčisl. Mat. i Mat. Fiz., 9 (1969), 30-41.

[25]

A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems," Applied Mathematical Sciences, 120, Springer-Verlag, New York, 1996.

[26]

A. K. Louis, "Inverse und Schlecht Gestellte Probleme," (German) [Inverse and ill-posed problems], Teubner Studienbücher Mathematik, B. G. Teubner, Stuttgart, 1989.

[27]

B. Mair, Tikhonov regularization for finitely and infinitely smoothing operators, SIAM J. Math. Anal., 25 (1994), 135-147.

[28]

P. Mathé and S. V. Pereverzev, Discretization strategy for linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (2003), 1263-1277.

[29]

_____, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (2003), 789-803.

[30]

P. Mathé and U. Tautenhahn, Interpolation in variable Hilbert scales with application to inverse problems, Inverse Problems, 22 (2006), 2271-2297.

[31]

M. T. Nair, E. Schock and U. Tautenhahn, Morozov's discrepancy principle under general source conditions, Z. Anal. Anwendungen, 22 (2003), 199-214.

[32]

M. T. Nair, S. Pereverzev and U. Tautenhahn, Regularization in Hilbert scales under general smoothing conditions, Inverse Problems, 21 (2005), 1851-1869.

[33]

M. T. Nair, "Linear Operator Equations: Approximation and Regularization," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. doi: 10.1142/9789812835659.

[34]

F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18 (1984), 29-37.

[35]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics I: Functional Analysis," Second edition, Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.

[36]

A. Rieder, "Keine Probleme mit inversen Problemen," (German) [No Problems with Inverse Problems], Eine Einführung in ihre stabile Lösung [An Introduction to their Stable Solution], Friedr. Vieweg & Sohn, Braunschweig, 2003.

[37]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, "Variational Methods in Imaging," Applied Mathematical Sciences, 167, Springer, New York, 2009.

[38]

E. Schock, Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence, in "Constructive Methods for the Practical Treatment of Integral Equations" (eds. G. Hämmerlin and K. H. Hoffmann), Internat. Schriftenreihe Numer.Math., 73, Birkhäuser, Basel, (1985), 234-243.

[39]

F. R. Stauffer and H. Sakai, Derivative spectroscopy, Applied Optics, 7 (1968), 61-65.

[40]

U. Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer. Anal., 33 (1996), 2120-2130.

[41]

U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Numer. Funct. Anal. & Optimiz., 19 (1998), 377-398. doi: 10.1080/01630569808816834.

[42]

D. Werner, "Funktionalanalysis," Third, revised and extended ed., Springer-Verlag, Berlin, 2000.

show all references

References:
[1]

K. Atkinson and W. Han, "Theoretical Numerical Analysis. A Functional Analysis Framework," 3rd edition, Texts in Applied Mathematics, 39, Springer, Dordrecht, 2009.

[2]

A. B. Bakushinsky and M. Yu. Kokurin, "Iterative Methods for Approximate Solution of Inverse Problems," Mathematics and its Applications (New York), 577, Springer, Dordrecht, 2004.

[3]

J. Baumeister, "Stable Solution of Inverse Problems," Friedr. Vieweg & Sohn, Braunschweig, 1987.

[4]

M. Bertero and P. Boccacci, "Introduction to Inverse Problems in Imaging," Institute of Physics Publishing, Bristol, 1998.

[5]

R. Bhatia, "Matrix Analysis," Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.

[6]

A. Böttcher, B. Hofmann, U. Tautenhahn and M. Yamamoto, Convergence rates for Tikhonov regularization from different kinds of smoothness conditions, Appl. Anal., 85 (2006), 555-578.

[7]

J. Cheng and M. Yamamoto, One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization, Inverse Problems, 16 (2000), L31-L38.

[8]

D. Düvelmeyer, B. Hofmann and M. Yamamoto, Range inclusions and approximate source conditions with general benchmark functions, Numer. Funct. Anal. Optim., 28 (2007), 1245-1261.

[9]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.

[10]

J. Flemming, B. Hofmann and P. Mathé, Sharp converse results for the regularization error using distance functions, Inverse Problems, 27 (2011), 025006 (18 pp).

[11]

C. W. Groetsch, "The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind," Pitman, Boston, MA, 1984.

[12]

M. Hanke, Regularization with differential operators: An iterative approach, Numer. Funct. Anal. & Optimiz., 13 (1992), 523-540. doi: 10.1080/01630569208816497.

[13]

M. Hegland, An optimal order regularization method which does not use additional smoothness assumptions, SIAM J. Numer. Anal., 29 (1992), 1446-1461.

[14]

_____, Variable Hilbert scales and their interpolation inequalities with applications to Tikhonov regularization, Appl. Anal., 59 (1995), 207-223.

[15]

_____, Error bounds for spectral enhancement which are based on variable Hilbert scale inequalities, J. Integral Equations Appl., 22 (2010), 285-312.

[16]

M. Hegland and B. Hofmann, Errors of regularisation under range inclusions using variable Hilbert scales,, 2010. Available from: \url{http://arxiv.org/abs/1005.3883}., (). 

[17]

B. Hofmann, Approximate source conditions in Tikhonov-Phillips regularization and consequences for inverse problems with multiplication operators, Mathematical Methods in the Applied Sciences, 29 (2006), 351-371. doi: 10.1002/mma.686.

[18]

B. Hofmann and P. Mathé, Analysis of profile functions for general linear regularization methods, SIAM J. Numer. Anal., 45 (2007), 1122-1141.

[19]

B. Hofmann, P. Mathé and M. Schieck, Modulus of continuity for conditionally stable ill-posed problems in Hilbert space, J. Inverse Ill-Posed Probl., 16 (2008), 567-585.

[20]

B. Hofmann, P. Mathé and H. von Weizsäcker, Regularization in Hilbert space under unbounded operators and general source conditions, Inverse Problems, 25 (2009), 115013 (15 pp).

[21]

B. Hofmann and M. Yamamoto, Convergence rates for Tikhonov regularization based on range inclusions, Inverse Problems, 21 (2005), 805-820.

[22]

T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem, Inverse Problems, 13 (1997), 1279-1299.

[23]

_____, Regularization of exponentially ill-posed problems, Numer. Funct. Anal. Optim., 21 (2000), 439-464.

[24]

V. K. Ivanov and T. I. Koroljuk, The estimation of errors in the solution of linear ill-posed problems, Ž. Vyčisl. Mat. i Mat. Fiz., 9 (1969), 30-41.

[25]

A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems," Applied Mathematical Sciences, 120, Springer-Verlag, New York, 1996.

[26]

A. K. Louis, "Inverse und Schlecht Gestellte Probleme," (German) [Inverse and ill-posed problems], Teubner Studienbücher Mathematik, B. G. Teubner, Stuttgart, 1989.

[27]

B. Mair, Tikhonov regularization for finitely and infinitely smoothing operators, SIAM J. Math. Anal., 25 (1994), 135-147.

[28]

P. Mathé and S. V. Pereverzev, Discretization strategy for linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (2003), 1263-1277.

[29]

_____, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems, 19 (2003), 789-803.

[30]

P. Mathé and U. Tautenhahn, Interpolation in variable Hilbert scales with application to inverse problems, Inverse Problems, 22 (2006), 2271-2297.

[31]

M. T. Nair, E. Schock and U. Tautenhahn, Morozov's discrepancy principle under general source conditions, Z. Anal. Anwendungen, 22 (2003), 199-214.

[32]

M. T. Nair, S. Pereverzev and U. Tautenhahn, Regularization in Hilbert scales under general smoothing conditions, Inverse Problems, 21 (2005), 1851-1869.

[33]

M. T. Nair, "Linear Operator Equations: Approximation and Regularization," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. doi: 10.1142/9789812835659.

[34]

F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18 (1984), 29-37.

[35]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics I: Functional Analysis," Second edition, Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.

[36]

A. Rieder, "Keine Probleme mit inversen Problemen," (German) [No Problems with Inverse Problems], Eine Einführung in ihre stabile Lösung [An Introduction to their Stable Solution], Friedr. Vieweg & Sohn, Braunschweig, 2003.

[37]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, "Variational Methods in Imaging," Applied Mathematical Sciences, 167, Springer, New York, 2009.

[38]

E. Schock, Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence, in "Constructive Methods for the Practical Treatment of Integral Equations" (eds. G. Hämmerlin and K. H. Hoffmann), Internat. Schriftenreihe Numer.Math., 73, Birkhäuser, Basel, (1985), 234-243.

[39]

F. R. Stauffer and H. Sakai, Derivative spectroscopy, Applied Optics, 7 (1968), 61-65.

[40]

U. Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer. Anal., 33 (1996), 2120-2130.

[41]

U. Tautenhahn, Optimality for ill-posed problems under general source conditions, Numer. Funct. Anal. & Optimiz., 19 (1998), 377-398. doi: 10.1080/01630569808816834.

[42]

D. Werner, "Funktionalanalysis," Third, revised and extended ed., Springer-Verlag, Berlin, 2000.

[1]

Haixia Yu. Hilbert transforms along double variable fractional monomials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1433-1446. doi: 10.3934/cpaa.2019069

[2]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems and Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

[3]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure and Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[4]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021046

[5]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[6]

Habib ur Rehman, Poom Kumam, Yusuf I. Suleiman, Widaya Kumam. An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022007

[7]

Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial and Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403

[8]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[9]

Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[10]

Konstantinos Papafitsoros, Kristian Bredies. A study of the one dimensional total generalised variation regularisation problem. Inverse Problems and Imaging, 2015, 9 (2) : 511-550. doi: 10.3934/ipi.2015.9.511

[11]

Anh N. Le. Sublacunary sets and interpolation sets for nilsequences. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1855-1871. doi: 10.3934/dcds.2021175

[12]

Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, S. H. Pau. A general multipurpose interpolation procedure: the magic points. Communications on Pure and Applied Analysis, 2009, 8 (1) : 383-404. doi: 10.3934/cpaa.2009.8.383

[13]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[14]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[15]

Ilesanmi Adeboye, Harrison Bray, David Constantine. Entropy rigidity and Hilbert volume. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1731-1744. doi: 10.3934/dcds.2019075

[16]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[17]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[18]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[19]

Jeng-Tzong Chen, Shing-Kai Kao, Jeng-Hong Kao, Wei-Chen Tai. An indirect BIE free of degenerate scales. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1969-1985. doi: 10.3934/cpaa.2021114

[20]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]