\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Microlocal aspects of common offset synthetic aperture radar imaging

Abstract / Introduction Related Papers Cited by
  • In this article, we analyze the microlocal properties of the linearized forward scattering operator $F$ and the reconstruction operator $F^{*}F$ appearing in bistatic synthetic aperture radar imaging. In our model, the radar source and detector travel along a line a fixed distance apart. We show that $F$ is a Fourier integral operator, and we give the mapping properties of the projections from the canonical relation of $F$, showing that the right projection is a blow-down and the left projection is a fold. We then show that $F^{*}F$ is a singular FIO belonging to the class $I^{3,0}$.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L.-E. Andersson, On the determination of a function from spherical averages, SIAM J. Math. Anal., 19 (1988), 214-232.doi: 10.1137/0519016.

    [2]

    M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Rev., 43 (2001), 301-312.doi: 10.1137/S0036144500368859.

    [3]

    M. Cheney and B. Borden, "Fundamentals of Radar Imaging," CBMS-NSF Regional Conference Series in Applied Mathematics, 79, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 2009.

    [4]

    J. Duistermaat, "Fourier Integral Operators," Birkhäuser Boston, Inc., Boston, Massachusetts, 1996.

    [5]

    J. Cohen and H. Bleistein, Velocity inversion procedure for acoustic waves, Geophysics, 44 (1979), 1077-1085.doi: 10.1190/1.1440996.

    [6]

    T. Dowling, "Radar Imaging Using Multiply Scattered Waves," Ph.D. Thesis, University of Limerick, Ireland, 2009.

    [7]

    R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Comm. Partial Differential Equations, 30 (2005), 1717-1740.

    [8]

    R. Felea, Displacement of artefacts in inverse scattering, Inverse Problems, 23 (2007), 1519-1531.doi: 10.1088/0266-5611/23/4/009.

    [9]

    R. Felea and A. Greenleaf, An FIO calculus for marine seismic imaging: Folds and cross caps, Comm. P.D.E., 33 (2008), 45-77.doi: 10.1080/03605300701318716.

    [10]

    A. Greenleaf and G. Uhlmann, Non-local inversion formulas for the X-ray transform, Duke Math. J., 58 (1989), 205-240.doi: 10.1215/S0012-7094-89-05811-0.

    [11]

    A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Functional Anal., 89 (1990), 202-232.doi: 10.1016/0022-1236(90)90011-9.

    [12]

    A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, Ann. Inst. Fourier (Grenoble), 40 (1990), 443-466.

    [13]

    A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry, in "Integral Geometry and Tomography" (Arcata, CA, 1989), 121-136 Contemporary Math., 113 Amer. Math. Soc., Providence, RI, 1990.

    [14]

    V. Guillemin, "Cosmology in $(2 + 1)$-Dimensions, Cyclic Models, and Deformations of $M_{2,1}$," Annals of Mathematics Studies, 121, Princeton University Press, Princeton, NJ, 1989.

    [15]

    V. Guillemin and S. Sternberg, "Geometric Asymptotics," Mathematical Surveys, No. 14, American Mathematical Society, Providence, RI, 1977.

    [16]

    V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J., 48 (1981), 251-267.doi: 10.1215/S0012-7094-81-04814-6.

    [17]

    L. Hörmander, Fourier integral operators, I, Acta Mathematica, 127 (1971), 79-183.doi: 10.1007/BF02392052.

    [18]

    A. M. Horne and G. Yates, "Bistatic Synthetic Aperture Radar," Proc. IEEE Radar Conf., 2002, 6-10.

    [19]

    L. Hörmander, "The Analysis of Linear Partial Differential Operators, I-IV," Springer-Verlag, New York, 1983.

    [20]

    A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR, in "Surveys on Solution Methods for Inverse Problems" (Vienna/New York) (eds. D. Colton, H. Engl, A. Louis, J. McLaughlin and W. Rundell), Springer, Vienna, 2000, 147-154.

    [21]

    R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 483-519.

    [22]

    C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-235.doi: 10.1088/0266-5611/18/1/315.

    [23]

    C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, J. Fourier Anal. Appl., 10 (2004), 133-148.doi: 10.1007/s00041-004-8008-0.

    [24]

    E. T. Quinto, The dependence of the generalized Radon transform on defining measures, Trans. Amer. Math. Soc., 257 (1980), 331-346.doi: 10.1090/S0002-9947-1980-0552261-8.

    [25]

    F. Tréves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. 1 and 2, Plenum Press, New York, 1980.

    [26]

    C. E. Yarman, B. Yazıcı and M. Cheney, Bistatic synthetic aperture radar imaging with arbitrary trajectories, IEEE Transactions on Image Processing, 17 (2008), 84-93.doi: 10.1109/TIP.2007.911812.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return