\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Identification of a real constant in linear evolution equations in Hilbert spaces

Abstract / Introduction Related Papers Cited by
  • Let $H$ be a real separable Hilbert space and $A:\mathcal{D}(A) \to H$ be a positive and self-adjoint (unbounded) operator, and denote by $A^\sigma$ its power of exponent $\sigma \in [-1,1)$. We consider the identification problem consisting in searching for a function $u:[0,T] \to H$ and a real constant $\mu$ that fulfill the initial-value problem $$ u' + Au = \mu \, A^\sigma u, \quad t \in (0,T), \quad u(0) = u_0, $$ and the additional condition $$ \alpha \|u(T)\|^{2} + \beta \int_{0}^{T}\|A^{1/2}u(\tau)\|^{2}d\tau = \rho, $$ where $u_{0} \in H$, $u_{0} \neq 0$ and $\alpha, \beta \geq 0$, $\alpha+\beta > 0$ and $\rho >0$ are given. By means of a finite-dimensional approximation scheme, we construct a unique solution $(u,\mu)$ of suitable regularity on the whole interval $[0,T]$, and exhibit an explicit continuous dependence estimate of Lipschitz-type with respect to the data $u_{0}$ and $\rho $. Also, we provide specific applications to second and fourth-order parabolic initial-boundary value problems.
    Mathematics Subject Classification: Primary: 35R30, 35K90; Secondary: 35K20, 35K25, 65N30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. A. Artyukhin and A. S. Okhapkin, Determination of the parameters in the generalized heat-conduction equation from transient experimental data, J. Eng. Phys. Thermophys., 42 (1982), 693-698.

    [2]

    J. R. Cannon, Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl., 8 (1964), 188-201.doi: 10.1016/0022-247X(64)90061-7.

    [3]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

    [4]

    P. Grisvard, Caractérisation de quelques espaces d'interpolation (French), Arch. Rational Mech. Anal., 25 (1967), 40-63.doi: 10.1007/BF00281421.

    [5]

    G. Hellwig, "Partial Differential Equations: An Introduction," Blaisdell Publishing Co. Ginn and Co., New York-Toronto-London, 1964.

    [6]

    A. Lorenzi, Recovering two constants in a parabolic linear equation, Journal of Physics: Conference Series, 73 (2007).

    [7]

    L. Lorenzi, An identification problem for the Ornstein-Uhlenbeck operator, Journal of Inverse and Ill-posed Problems, 19 (2011), 293-326.

    [8]

    A. Sh. Lyubanova, Identification of a constant coefficient in an elliptic equation, Appl. Anal., 87 (2008), 1121-1128.doi: 10.1080/00036810802189654.

    [9]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.

    [10]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988.

    [11]

    M. Yamamoto, Determination of constant parameters in some semilinear parabolic equations, in "Ill-Posed Problems in Natural Sciences" (Moscow, 1991), VSP, Utrecht, (1992), 439-445.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return