• Previous Article
    Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements
  • IPI Home
  • This Issue
  • Next Article
    Identification of a real constant in linear evolution equations in Hilbert spaces
August  2011, 5(3): 715-730. doi: 10.3934/ipi.2011.5.715

Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice

1. 

Graduate school of pure and applied sciences, University of Tsukuba, Tennnoudai 1-1-1, Tsukuba, Ibaraki, 305-0821, Japan

Received  August 2010 Revised  May 2011 Published  August 2011

We consider an inverse boundary value problem for a discrete Schrödinger operator $-\Delta + \hat{q} $ on a bounded domain in the square lattice. We define an analogue of the Dirichlet-to-Neumann map, and give a reconstruction procedure of the potential $\hat{q} $ from the D-to-N map for all energies.
Citation: Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715
References:
[1]

K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice,, preprint., ().   Google Scholar

[2]

L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/4/045010.  Google Scholar

[3]

L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105009.  Google Scholar

[4]

F. R. Chung, "Spectral Graph Theory,", CBMS Regional Conference Series in Mathematics, 92 (1997).   Google Scholar

[5]

E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network,, SIAM J. Appl. Math., 51 (1991), 1011.  doi: 10.1137/0151051.  Google Scholar

[6]

E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements,, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781.   Google Scholar

[7]

R. Diestel, "Graph Theory,", 2nd edition, 173 (2000).   Google Scholar

[8]

H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, submitted., ().   Google Scholar

[9]

H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem,, J. Math. Kyoto Univ., 31 (1991), 743.   Google Scholar

[10]

R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem,, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93.   Google Scholar

[11]

A. I. Nachman, Reconstruction from boundary measurements,, Ann. Math. (2), 128 (1988), 531.  doi: 10.2307/1971435.  Google Scholar

[12]

A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem,, Commun. Math. Phys., 115 (1988), 595.  doi: 10.1007/BF01224129.  Google Scholar

[13]

R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks,, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, (2000).   Google Scholar

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. Math. (2), 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

show all references

References:
[1]

K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice,, preprint., ().   Google Scholar

[2]

L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/4/045010.  Google Scholar

[3]

L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105009.  Google Scholar

[4]

F. R. Chung, "Spectral Graph Theory,", CBMS Regional Conference Series in Mathematics, 92 (1997).   Google Scholar

[5]

E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network,, SIAM J. Appl. Math., 51 (1991), 1011.  doi: 10.1137/0151051.  Google Scholar

[6]

E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements,, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781.   Google Scholar

[7]

R. Diestel, "Graph Theory,", 2nd edition, 173 (2000).   Google Scholar

[8]

H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators,, submitted., ().   Google Scholar

[9]

H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem,, J. Math. Kyoto Univ., 31 (1991), 743.   Google Scholar

[10]

R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem,, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93.   Google Scholar

[11]

A. I. Nachman, Reconstruction from boundary measurements,, Ann. Math. (2), 128 (1988), 531.  doi: 10.2307/1971435.  Google Scholar

[12]

A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem,, Commun. Math. Phys., 115 (1988), 595.  doi: 10.1007/BF01224129.  Google Scholar

[13]

R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks,, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, (2000).   Google Scholar

[14]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. Math. (2), 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]