Citation: |
[1] |
K. Ando, Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice, preprint. |
[2] |
L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 30 pp.doi: 10.1088/0266-5611/26/4/045010. |
[3] |
L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 36 pp.doi: 10.1088/0266-5611/26/10/105009. |
[4] |
F. R. Chung, "Spectral Graph Theory," CBMS Regional Conference Series in Mathematics, 92, AMS, Providence, RI, 1997. |
[5] |
E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math., 51 (1991), 1011-1029.doi: 10.1137/0151051. |
[6] |
E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781-814. |
[7] |
R. Diestel, "Graph Theory," 2nd edition, Graduate Texts in Mathematics, 173, Springer-Verlag, New York, 2000. |
[8] |
H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger operators, submitted. |
[9] |
H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753. |
[10] |
R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93-152, 255. |
[11] |
A. I. Nachman, Reconstruction from boundary measurements, Ann. Math. (2), 128 (1988), 531-576.doi: 10.2307/1971435. |
[12] |
A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem, Commun. Math. Phys., 115 (1988), 595-605.doi: 10.1007/BF01224129. |
[13] |
R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, 2000. Available from: http://www.math.washington.edu/~reu//papers/2000/oberlin/oberlin_schrodinger.pdf. |
[14] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), 125 (1987), 153-169.doi: 10.2307/1971291. |