\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice

Abstract / Introduction Related Papers Cited by
  • We consider an inverse boundary value problem for a discrete Schrödinger operator $-\Delta + \hat{q} $ on a bounded domain in the square lattice. We define an analogue of the Dirichlet-to-Neumann map, and give a reconstruction procedure of the potential $\hat{q} $ from the D-to-N map for all energies.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 39A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. AndoInverse scattering theory for discrete Schrödinger operators on the hexagonal lattice, preprint.

    [2]

    L. Borcea, V. Druskin and A. Mamonov, Circular resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 30 pp.doi: 10.1088/0266-5611/26/4/045010.

    [3]

    L. Borcea, V. Druskin, A. Mamonov and F. Guevara Vasquez, Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements, Inverse Problems, 26 (2010), 36 pp.doi: 10.1088/0266-5611/26/10/105009.

    [4]

    F. R. Chung, "Spectral Graph Theory," CBMS Regional Conference Series in Mathematics, 92, AMS, Providence, RI, 1997.

    [5]

    E. Curtis and J. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math., 51 (1991), 1011-1029.doi: 10.1137/0151051.

    [6]

    E. Curtis, E. Mooers and J. Morrow, Finding the conductors in circular networks from boundary measurements, RAIRO Modél. Math. Anal. Numér., 28 (1994), 781-814.

    [7]

    R. Diestel, "Graph Theory," 2nd edition, Graduate Texts in Mathematics, 173, Springer-Verlag, New York, 2000.

    [8]

    H. Isozaki and E. KorotyaevInverse problems, trace formulae for discrete Schrödinger operators, submitted.

    [9]

    H. Isozaki, Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753.

    [10]

    R. G. Novikov and G. M. Khenkin, The $\overline\partial$-equation in the multidimensional inverse scattering problem, (Russian) Uspekhi Mat. Nauk, 42 (1987), 93-152, 255.

    [11]

    A. I. Nachman, Reconstruction from boundary measurements, Ann. Math. (2), 128 (1988), 531-576.doi: 10.2307/1971435.

    [12]

    A. I. Nachman, J. Sylvester and G. Uhlmann, An $n$-dimensional Borg-Levinson theorem, Commun. Math. Phys., 115 (1988), 595-605.doi: 10.1007/BF01224129.

    [13]

    R. Oberlin, Discrete inverse problems for Schrödinger and resistor networks, Research archive of Research Experiences for Undergraduates program at Univ. of Washington, 2000. Available from: http://www.math.washington.edu/~reu//papers/2000/oberlin/oberlin_schrodinger.pdf.

    [14]

    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math. (2), 125 (1987), 153-169.doi: 10.2307/1971291.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return