November  2011, 5(4): 745-773. doi: 10.3934/ipi.2011.5.745

Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map

1. 

University of Carthage, Department of Mathematics, Faculty of Sciences of Bizerte, 7021 Jarzouna Bizerte, Tunisia

2. 

Université Paris 13, CNRS, UMR 7539 LAGA, 99, avenue Jean-Baptiste Clément, F-93 430 Villetaneuse, France

Received  February 2011 Revised  September 2011 Published  November 2011

In this article we seek stability estimates in the inverse problem of determining the potential or the velocity in a wave equation in an anisotropic medium from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated to the wave equation. We prove in dimension $n\geq 2$ that the knowledge of the Dirichlet-to-Neumann map for the wave equation uniquely determines the electric potential and we prove Hölder-type stability in determining the potential. We prove similar results for the determination of velocities close to 1.
Citation: Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745
References:
[1]

M. Anderson, A. Katsuda, Y. Kurylev, M. Lassas and M. Taylor, Boundary regularity for the Ricci equation, geometric convergence, and Gel'fand's inverse boundary problem,, Inventiones Math., 158 (2004), 261.  doi: 10.1007/s00222-004-0371-6.  Google Scholar

[2]

G. Alessandrini and J. Sylvester, Stability for multidimensional inverse spectral problem,, Commun. PDE, 15 (1990), 711.  doi: 10.1080/03605309908820705.  Google Scholar

[3]

M. Belishev, Boundary control in reconstruction of manifolds and metrics (BC method),, Inverse Problems, 13 (1997).  doi: 10.1088/0266-5611/13/5/002.  Google Scholar

[4]

M. Belishev and Y. V. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC- method),, Commun. Partial Differ. Equations, 17 (1992), 767.  doi: 10.1080/03605309208820863.  Google Scholar

[5]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Applicable Analysis, 83 (2004), 983.   Google Scholar

[6]

M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247 (2009), 465.  doi: 10.1016/j.jde.2009.03.024.  Google Scholar

[7]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map,, J. Funct. Anal., 258 (2010), 161.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[8]

M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,, Applicable Analysis, 85 (2006), 1219.  doi: 10.1080/00036810600787873.  Google Scholar

[9]

M. Bellassoued, D. Jellali and M. Yamamoto, Stability Estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,, J. Math. Anal. Appl., 343 (2008), 1036.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[10]

A.-P. Calderón, On an inverse boundary value problem,, in, (1980), 65.   Google Scholar

[11]

F. Cardoso and R. Mendoza, On the hyperbolic Dirichlet-to-Neumann functional,, Comm. Partial Diff. Equations, 21 (1996), 1235.   Google Scholar

[12]

J. Cheng and G. Nakamura, Stability for the inverse potential problem by finite measurements on the boundary,, Inverse Problems, 17 (2001), 273.   Google Scholar

[13]

M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques,", Mathématiques et Applications, (2009).   Google Scholar

[14]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems,, Inventiones Math., 178 (2009), 119.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[15]

G. Eskin, A new approach to hyperbolic inverse problems,, Inverse Problems, 22 (2006), 815.   Google Scholar

[16]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Comm. Partial Differential Equations, 32 (2007), 1737.   Google Scholar

[17]

G. Eskin, Global uniqueness in the inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials,, Comm. Math. Phys., 222 (2001), 503.  doi: 10.1007/s002200100522.  Google Scholar

[18]

E. Hebey, "Sobolev Spaces on Riemannian Manifolds,", Lecture Notes in Mathematics, 1635 (1996).   Google Scholar

[19]

V. Isakov, An inverse hyperbolic problem with many boundary measurements,, Comm. Part. Dif. Equations, 16 (1991), 1183.  doi: 10.1080/03605309108820794.  Google Scholar

[20]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Applied Mathematical Sciences, 127 (1998).   Google Scholar

[21]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8 (1992), 193.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[22]

J. Jost, "Riemannian Geometry and Geometric Analysis,", Universitext, (1995).   Google Scholar

[23]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123 (2001).   Google Scholar

[24]

Y. V. Kurylev and M. Lassas, Hyperbolic inverse problem with data on a part of the boundary,, in, 16 (2000), 259.   Google Scholar

[25]

J.-L. Lions and E. Magenes, "Non-Homogenous Boundary Value Problems and Applications,", Volumes I and II, (1972).   Google Scholar

[26]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Annals of Math., 161 (2005), 1093.  doi: 10.4007/annals.2005.161.1093.  Google Scholar

[27]

Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity,, Inverse Problems, 6 (1990), 91.  doi: 10.1088/0266-5611/6/1/009.  Google Scholar

[28]

Rakesh and W. Symes, Uniqueness for an inverse problems for the wave equation,, Comm. Partial Diff. Equations, 13 (1988), 87.  doi: 10.1080/03605308808820539.  Google Scholar

[29]

A. Ramm and J. Sjöstrand, An inverse problem of the wave equation,, Math. Z., 206 (1991), 119.  doi: 10.1007/BF02571330.  Google Scholar

[30]

V. Sharafutdinov, "Integral Geometry of Tensor Fields," Inverse and Ill-Posed Problems Series,, VSP, (1994).   Google Scholar

[31]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet-to-Neumann map in anisotropic media,, J. Functional Anal., 154 (1998), 330.   Google Scholar

[32]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,, Duke Math. J., 123 (2004), 445.   Google Scholar

[33]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map,, International Math. Research Notices, 2005 (): 1047.  doi: 10.1155/IMRN.2005.1047.  Google Scholar

[34]

Z. Sun, On continous dependence for an inverse initial-boundary value problem for the wave equation,, J. Math. Anal. App., 150 (1990), 188.  doi: 10.1016/0022-247X(90)90207-V.  Google Scholar

[35]

G. Uhlmann, Inverse boundary value problems and applications,, in, 207 (1992), 153.   Google Scholar

show all references

References:
[1]

M. Anderson, A. Katsuda, Y. Kurylev, M. Lassas and M. Taylor, Boundary regularity for the Ricci equation, geometric convergence, and Gel'fand's inverse boundary problem,, Inventiones Math., 158 (2004), 261.  doi: 10.1007/s00222-004-0371-6.  Google Scholar

[2]

G. Alessandrini and J. Sylvester, Stability for multidimensional inverse spectral problem,, Commun. PDE, 15 (1990), 711.  doi: 10.1080/03605309908820705.  Google Scholar

[3]

M. Belishev, Boundary control in reconstruction of manifolds and metrics (BC method),, Inverse Problems, 13 (1997).  doi: 10.1088/0266-5611/13/5/002.  Google Scholar

[4]

M. Belishev and Y. V. Kurylev, To the reconstruction of a Riemannian manifold via its spectral data (BC- method),, Commun. Partial Differ. Equations, 17 (1992), 767.  doi: 10.1080/03605309208820863.  Google Scholar

[5]

M. Bellassoued, Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients,, Applicable Analysis, 83 (2004), 983.   Google Scholar

[6]

M. Bellassoued, M. Choulli and M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem,, J. Diff. Equat., 247 (2009), 465.  doi: 10.1016/j.jde.2009.03.024.  Google Scholar

[7]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map,, J. Funct. Anal., 258 (2010), 161.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[8]

M. Bellassoued, D. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,, Applicable Analysis, 85 (2006), 1219.  doi: 10.1080/00036810600787873.  Google Scholar

[9]

M. Bellassoued, D. Jellali and M. Yamamoto, Stability Estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,, J. Math. Anal. Appl., 343 (2008), 1036.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[10]

A.-P. Calderón, On an inverse boundary value problem,, in, (1980), 65.   Google Scholar

[11]

F. Cardoso and R. Mendoza, On the hyperbolic Dirichlet-to-Neumann functional,, Comm. Partial Diff. Equations, 21 (1996), 1235.   Google Scholar

[12]

J. Cheng and G. Nakamura, Stability for the inverse potential problem by finite measurements on the boundary,, Inverse Problems, 17 (2001), 273.   Google Scholar

[13]

M. Choulli, "Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques,", Mathématiques et Applications, (2009).   Google Scholar

[14]

D. Dos Santos Ferreira, C. E. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems,, Inventiones Math., 178 (2009), 119.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[15]

G. Eskin, A new approach to hyperbolic inverse problems,, Inverse Problems, 22 (2006), 815.   Google Scholar

[16]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients,, Comm. Partial Differential Equations, 32 (2007), 1737.   Google Scholar

[17]

G. Eskin, Global uniqueness in the inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials,, Comm. Math. Phys., 222 (2001), 503.  doi: 10.1007/s002200100522.  Google Scholar

[18]

E. Hebey, "Sobolev Spaces on Riemannian Manifolds,", Lecture Notes in Mathematics, 1635 (1996).   Google Scholar

[19]

V. Isakov, An inverse hyperbolic problem with many boundary measurements,, Comm. Part. Dif. Equations, 16 (1991), 1183.  doi: 10.1080/03605309108820794.  Google Scholar

[20]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Applied Mathematical Sciences, 127 (1998).   Google Scholar

[21]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data,, Inverse Problems, 8 (1992), 193.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[22]

J. Jost, "Riemannian Geometry and Geometric Analysis,", Universitext, (1995).   Google Scholar

[23]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123 (2001).   Google Scholar

[24]

Y. V. Kurylev and M. Lassas, Hyperbolic inverse problem with data on a part of the boundary,, in, 16 (2000), 259.   Google Scholar

[25]

J.-L. Lions and E. Magenes, "Non-Homogenous Boundary Value Problems and Applications,", Volumes I and II, (1972).   Google Scholar

[26]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Annals of Math., 161 (2005), 1093.  doi: 10.4007/annals.2005.161.1093.  Google Scholar

[27]

Rakesh, Reconstruction for an inverse problem for the wave equation with constant velocity,, Inverse Problems, 6 (1990), 91.  doi: 10.1088/0266-5611/6/1/009.  Google Scholar

[28]

Rakesh and W. Symes, Uniqueness for an inverse problems for the wave equation,, Comm. Partial Diff. Equations, 13 (1988), 87.  doi: 10.1080/03605308808820539.  Google Scholar

[29]

A. Ramm and J. Sjöstrand, An inverse problem of the wave equation,, Math. Z., 206 (1991), 119.  doi: 10.1007/BF02571330.  Google Scholar

[30]

V. Sharafutdinov, "Integral Geometry of Tensor Fields," Inverse and Ill-Posed Problems Series,, VSP, (1994).   Google Scholar

[31]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet-to-Neumann map in anisotropic media,, J. Functional Anal., 154 (1998), 330.   Google Scholar

[32]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity,, Duke Math. J., 123 (2004), 445.   Google Scholar

[33]

P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map,, International Math. Research Notices, 2005 (): 1047.  doi: 10.1155/IMRN.2005.1047.  Google Scholar

[34]

Z. Sun, On continous dependence for an inverse initial-boundary value problem for the wave equation,, J. Math. Anal. App., 150 (1990), 188.  doi: 10.1016/0022-247X(90)90207-V.  Google Scholar

[35]

G. Uhlmann, Inverse boundary value problems and applications,, in, 207 (1992), 153.   Google Scholar

[1]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[2]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[3]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[4]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[5]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[6]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[7]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[8]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[9]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[10]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[11]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[12]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[13]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[14]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[15]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[16]

Wolfgang Arendt, Daniel Daners. Varying domains: Stability of the Dirichlet and the Poisson problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 21-39. doi: 10.3934/dcds.2008.21.21

[17]

Marcone C. Pereira, Ricardo P. Silva. Error estimates for a Neumann problem in highly oscillating thin domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 803-817. doi: 10.3934/dcds.2013.33.803

[18]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[19]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[20]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (16)

[Back to Top]