November  2011, 5(4): 775-791. doi: 10.3934/ipi.2011.5.775

Recovery of the heat coefficient by two measurements

1. 

Department of Mathematics, Kuwait University, Safat -13060, Kuwait

2. 

Department of Mathematics, University of West Georgia, Carrollton, GA 30118, United States

Received  March 2010 Revised  August 2011 Published  November 2011

We prove that it takes at most two measurements on the boundary to recover the heat coefficient of a one dimensional heat equation if its lower bound is known. Otherwise a finite number of measurements is needed. We also provide a new constructive algorithm for its recovery. Using asymptotics of eigenfunctions of the associated Sturm-Liouville problem we show that a hot spot initial condition generates all, except maybe a finite number of boundary spectral data. Then a counting argument based on the method of false position helps search for the number of missing boundary spectral data which is then unraveled by a finite number of measurements. Finally, we show how the boundary spectral data is converted into spectral data, and the well known Gelfand-Levitan-Gasymov inverse spectral theory of Sturm-Liouville operators yields the reconstruction of the heat coefficient uniquely.
Citation: Amin Boumenir, Vu Kim Tuan. Recovery of the heat coefficient by two measurements. Inverse Problems and Imaging, 2011, 5 (4) : 775-791. doi: 10.3934/ipi.2011.5.775
References:
[1]

A. L. Andrew, Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 22 (2006), 2069-2081. doi: 10.1088/0266-5611/22/6/010.

[2]

S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, Cambridge, 1995.

[3]

S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation, J. Inv. Ill-Posed Probl., 5 (1997), 309-322. doi: 10.1515/jiip.1997.5.4.309.

[4]

S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method), in "Distributed Parameter Systems: Modelling and Control" (Warsaw, 1995), Control and Cybernetics, 25 (1996), 429-440.

[5]

S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation, J. Inv. Ill-Posed Probl., 13 (2005), 317-330. doi: 10.1515/156939405775201718.

[6]

M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian), Algebra i Analiz, 7 (1995), 3-32; translation in St. Petersburg Math. J., 7 (1996), 869-890.

[7]

A. Boumenir, The recovery of analytic potentials, Inverse Problems, 15 (1999), 1405-1423. doi: 10.1088/0266-5611/15/6/302.

[8]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Am. Math. Soc., 138 (2010), 3911-3921. doi: 10.1090/S0002-9939-2010-10297-6.

[9]

A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end, Numer. Funct. Anal. Optim., 31 (2010), 155-163. doi: 10.1080/01630560903574993.

[10]

R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem, IMA J. Appl. Math., 15 (1995), 75-88.

[11]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12. doi: 10.1007/BF00392201.

[12]

V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006.

[13]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[14]

B. M. Levitan, "Inverse Sturm-Liouville Problems," Translated from the Russian by O. Efimov, VSP, Zeist, 1987.

[15]

B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk, 19 (1964), 3-63.

[16]

B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators," Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I., 1975.

[17]

V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in "American Mathematical Society Translations," Series 2, Vol. 101, Six Papers in Analysis, American Mathematical Society, Providence, R.I., 1973.

[18]

J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev., 28 (1986), 53-72. doi: 10.1137/1028003.

[19]

J. R. McLaughlin, Solving inverse problems with spectral data, in "Surveys on Solution Methods for Inverse Problems," 169-194, Springer, Vienna, 2000. doi: 10.1007/978-3-7091-6296-5_10.

[20]

B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources, IMA J. Appl. Math., 52 (1994), 31-50. doi: 10.1093/imamat/52.1.31.

[21]

B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal., 23 (1992), 482-504. doi: 10.1137/0523023.

[22]

Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions of Acoustics, Speech, and Signal Processing, 38 (1990), 814-824. doi: 10.1109/29.56027.

[23]

Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing," Marcel Dekker, New York-Basel, 2004.

[24]

T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas," John Wiley & Sons, Hoboken, New Jersey, 2003. doi: 10.1002/0471722839.

show all references

References:
[1]

A. L. Andrew, Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 22 (2006), 2069-2081. doi: 10.1088/0266-5611/22/6/010.

[2]

S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, Cambridge, 1995.

[3]

S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation, J. Inv. Ill-Posed Probl., 5 (1997), 309-322. doi: 10.1515/jiip.1997.5.4.309.

[4]

S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method), in "Distributed Parameter Systems: Modelling and Control" (Warsaw, 1995), Control and Cybernetics, 25 (1996), 429-440.

[5]

S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation, J. Inv. Ill-Posed Probl., 13 (2005), 317-330. doi: 10.1515/156939405775201718.

[6]

M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian), Algebra i Analiz, 7 (1995), 3-32; translation in St. Petersburg Math. J., 7 (1996), 869-890.

[7]

A. Boumenir, The recovery of analytic potentials, Inverse Problems, 15 (1999), 1405-1423. doi: 10.1088/0266-5611/15/6/302.

[8]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Am. Math. Soc., 138 (2010), 3911-3921. doi: 10.1090/S0002-9939-2010-10297-6.

[9]

A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end, Numer. Funct. Anal. Optim., 31 (2010), 155-163. doi: 10.1080/01630560903574993.

[10]

R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem, IMA J. Appl. Math., 15 (1995), 75-88.

[11]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12. doi: 10.1007/BF00392201.

[12]

V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006.

[13]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[14]

B. M. Levitan, "Inverse Sturm-Liouville Problems," Translated from the Russian by O. Efimov, VSP, Zeist, 1987.

[15]

B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk, 19 (1964), 3-63.

[16]

B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators," Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I., 1975.

[17]

V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in "American Mathematical Society Translations," Series 2, Vol. 101, Six Papers in Analysis, American Mathematical Society, Providence, R.I., 1973.

[18]

J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev., 28 (1986), 53-72. doi: 10.1137/1028003.

[19]

J. R. McLaughlin, Solving inverse problems with spectral data, in "Surveys on Solution Methods for Inverse Problems," 169-194, Springer, Vienna, 2000. doi: 10.1007/978-3-7091-6296-5_10.

[20]

B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources, IMA J. Appl. Math., 52 (1994), 31-50. doi: 10.1093/imamat/52.1.31.

[21]

B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal., 23 (1992), 482-504. doi: 10.1137/0523023.

[22]

Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions of Acoustics, Speech, and Signal Processing, 38 (1990), 814-824. doi: 10.1109/29.56027.

[23]

Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing," Marcel Dekker, New York-Basel, 2004.

[24]

T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas," John Wiley & Sons, Hoboken, New Jersey, 2003. doi: 10.1002/0471722839.

[1]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[2]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[3]

Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems and Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063

[4]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[5]

Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021060

[6]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems and Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[7]

Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems and Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008

[8]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[9]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[10]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems and Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[11]

Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029

[12]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[13]

Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems and Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036

[14]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[15]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[16]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[17]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[18]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[19]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[20]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]