November  2011, 5(4): 775-791. doi: 10.3934/ipi.2011.5.775

Recovery of the heat coefficient by two measurements

1. 

Department of Mathematics, Kuwait University, Safat -13060, Kuwait

2. 

Department of Mathematics, University of West Georgia, Carrollton, GA 30118, United States

Received  March 2010 Revised  August 2011 Published  November 2011

We prove that it takes at most two measurements on the boundary to recover the heat coefficient of a one dimensional heat equation if its lower bound is known. Otherwise a finite number of measurements is needed. We also provide a new constructive algorithm for its recovery. Using asymptotics of eigenfunctions of the associated Sturm-Liouville problem we show that a hot spot initial condition generates all, except maybe a finite number of boundary spectral data. Then a counting argument based on the method of false position helps search for the number of missing boundary spectral data which is then unraveled by a finite number of measurements. Finally, we show how the boundary spectral data is converted into spectral data, and the well known Gelfand-Levitan-Gasymov inverse spectral theory of Sturm-Liouville operators yields the reconstruction of the heat coefficient uniquely.
Citation: Amin Boumenir, Vu Kim Tuan. Recovery of the heat coefficient by two measurements. Inverse Problems & Imaging, 2011, 5 (4) : 775-791. doi: 10.3934/ipi.2011.5.775
References:
[1]

A. L. Andrew, Computing Sturm-Liouville potentials from two spectra,, Inverse Problems, 22 (2006), 2069.  doi: 10.1088/0266-5611/22/6/010.  Google Scholar

[2]

S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,", Cambridge University Press, (1995).   Google Scholar

[3]

S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation,, J. Inv. Ill-Posed Probl., 5 (1997), 309.  doi: 10.1515/jiip.1997.5.4.309.  Google Scholar

[4]

S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method),, in, 25 (1996), 429.   Google Scholar

[5]

S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation,, J. Inv. Ill-Posed Probl., 13 (2005), 317.  doi: 10.1515/156939405775201718.  Google Scholar

[6]

M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian),, Algebra i Analiz, 7 (1995), 3.   Google Scholar

[7]

A. Boumenir, The recovery of analytic potentials,, Inverse Problems, 15 (1999), 1405.  doi: 10.1088/0266-5611/15/6/302.  Google Scholar

[8]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation,, Proc. Am. Math. Soc., 138 (2010), 3911.  doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[9]

A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end,, Numer. Funct. Anal. Optim., 31 (2010), 155.  doi: 10.1080/01630560903574993.  Google Scholar

[10]

R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem,, IMA J. Appl. Math., 15 (1995), 75.   Google Scholar

[11]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations,, Arch. Rational Mech. Anal., 124 (1993), 1.  doi: 10.1007/BF00392201.  Google Scholar

[12]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second edition, 127 (2006).   Google Scholar

[13]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123 (2001).   Google Scholar

[14]

B. M. Levitan, "Inverse Sturm-Liouville Problems,", Translated from the Russian by O. Efimov, (1987).   Google Scholar

[15]

B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra,, Uspehi Mat. Nauk, 19 (1964), 3.   Google Scholar

[16]

B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators,", Translated from the Russian by Amiel Feinstein, (1975).   Google Scholar

[17]

V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in, American Mathematical Society Translations, (1973).   Google Scholar

[18]

J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data,, SIAM Rev., 28 (1986), 53.  doi: 10.1137/1028003.  Google Scholar

[19]

J. R. McLaughlin, Solving inverse problems with spectral data,, in, (2000), 169.  doi: 10.1007/978-3-7091-6296-5_10.  Google Scholar

[20]

B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources,, IMA J. Appl. Math., 52 (1994), 31.  doi: 10.1093/imamat/52.1.31.  Google Scholar

[21]

B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data,, SIAM J. Math. Anal., 23 (1992), 482.  doi: 10.1137/0523023.  Google Scholar

[22]

Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,, IEEE Transactions of Acoustics, 38 (1990), 814.  doi: 10.1109/29.56027.  Google Scholar

[23]

Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing,", Marcel Dekker, (2004).   Google Scholar

[24]

T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas,", John Wiley & Sons, (2003).  doi: 10.1002/0471722839.  Google Scholar

show all references

References:
[1]

A. L. Andrew, Computing Sturm-Liouville potentials from two spectra,, Inverse Problems, 22 (2006), 2069.  doi: 10.1088/0266-5611/22/6/010.  Google Scholar

[2]

S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,", Cambridge University Press, (1995).   Google Scholar

[3]

S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation,, J. Inv. Ill-Posed Probl., 5 (1997), 309.  doi: 10.1515/jiip.1997.5.4.309.  Google Scholar

[4]

S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method),, in, 25 (1996), 429.   Google Scholar

[5]

S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation,, J. Inv. Ill-Posed Probl., 13 (2005), 317.  doi: 10.1515/156939405775201718.  Google Scholar

[6]

M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian),, Algebra i Analiz, 7 (1995), 3.   Google Scholar

[7]

A. Boumenir, The recovery of analytic potentials,, Inverse Problems, 15 (1999), 1405.  doi: 10.1088/0266-5611/15/6/302.  Google Scholar

[8]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation,, Proc. Am. Math. Soc., 138 (2010), 3911.  doi: 10.1090/S0002-9939-2010-10297-6.  Google Scholar

[9]

A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end,, Numer. Funct. Anal. Optim., 31 (2010), 155.  doi: 10.1080/01630560903574993.  Google Scholar

[10]

R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem,, IMA J. Appl. Math., 15 (1995), 75.   Google Scholar

[11]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations,, Arch. Rational Mech. Anal., 124 (1993), 1.  doi: 10.1007/BF00392201.  Google Scholar

[12]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second edition, 127 (2006).   Google Scholar

[13]

A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems,", Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123 (2001).   Google Scholar

[14]

B. M. Levitan, "Inverse Sturm-Liouville Problems,", Translated from the Russian by O. Efimov, (1987).   Google Scholar

[15]

B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra,, Uspehi Mat. Nauk, 19 (1964), 3.   Google Scholar

[16]

B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators,", Translated from the Russian by Amiel Feinstein, (1975).   Google Scholar

[17]

V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in, American Mathematical Society Translations, (1973).   Google Scholar

[18]

J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data,, SIAM Rev., 28 (1986), 53.  doi: 10.1137/1028003.  Google Scholar

[19]

J. R. McLaughlin, Solving inverse problems with spectral data,, in, (2000), 169.  doi: 10.1007/978-3-7091-6296-5_10.  Google Scholar

[20]

B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources,, IMA J. Appl. Math., 52 (1994), 31.  doi: 10.1093/imamat/52.1.31.  Google Scholar

[21]

B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data,, SIAM J. Math. Anal., 23 (1992), 482.  doi: 10.1137/0523023.  Google Scholar

[22]

Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise,, IEEE Transactions of Acoustics, 38 (1990), 814.  doi: 10.1109/29.56027.  Google Scholar

[23]

Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing,", Marcel Dekker, (2004).   Google Scholar

[24]

T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas,", John Wiley & Sons, (2003).  doi: 10.1002/0471722839.  Google Scholar

[1]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[2]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[3]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[4]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[5]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[6]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[7]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[8]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[9]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[10]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[13]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[14]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[15]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[16]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[17]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[18]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]