-
Previous Article
Uniqueness in inverse transmission scattering problems for multilayered obstacles
- IPI Home
- This Issue
-
Next Article
Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map
Recovery of the heat coefficient by two measurements
1. | Department of Mathematics, Kuwait University, Safat -13060, Kuwait |
2. | Department of Mathematics, University of West Georgia, Carrollton, GA 30118, United States |
References:
[1] |
A. L. Andrew, Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 22 (2006), 2069-2081.
doi: 10.1088/0266-5611/22/6/010. |
[2] |
S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, Cambridge, 1995. |
[3] |
S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation, J. Inv. Ill-Posed Probl., 5 (1997), 309-322.
doi: 10.1515/jiip.1997.5.4.309. |
[4] |
S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method), in "Distributed Parameter Systems: Modelling and Control" (Warsaw, 1995), Control and Cybernetics, 25 (1996), 429-440. |
[5] |
S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation, J. Inv. Ill-Posed Probl., 13 (2005), 317-330.
doi: 10.1515/156939405775201718. |
[6] |
M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian), Algebra i Analiz, 7 (1995), 3-32; translation in St. Petersburg Math. J., 7 (1996), 869-890. |
[7] |
A. Boumenir, The recovery of analytic potentials, Inverse Problems, 15 (1999), 1405-1423.
doi: 10.1088/0266-5611/15/6/302. |
[8] |
A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Am. Math. Soc., 138 (2010), 3911-3921.
doi: 10.1090/S0002-9939-2010-10297-6. |
[9] |
A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end, Numer. Funct. Anal. Optim., 31 (2010), 155-163.
doi: 10.1080/01630560903574993. |
[10] |
R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem, IMA J. Appl. Math., 15 (1995), 75-88. |
[11] |
V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.
doi: 10.1007/BF00392201. |
[12] |
V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006. |
[13] |
A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001. |
[14] |
B. M. Levitan, "Inverse Sturm-Liouville Problems," Translated from the Russian by O. Efimov, VSP, Zeist, 1987. |
[15] |
B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk, 19 (1964), 3-63. |
[16] |
B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators," Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I., 1975. |
[17] |
V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in "American Mathematical Society Translations," Series 2, Vol. 101, Six Papers in Analysis, American Mathematical Society, Providence, R.I., 1973. |
[18] |
J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev., 28 (1986), 53-72.
doi: 10.1137/1028003. |
[19] |
J. R. McLaughlin, Solving inverse problems with spectral data, in "Surveys on Solution Methods for Inverse Problems," 169-194, Springer, Vienna, 2000.
doi: 10.1007/978-3-7091-6296-5_10. |
[20] |
B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources, IMA J. Appl. Math., 52 (1994), 31-50.
doi: 10.1093/imamat/52.1.31. |
[21] |
B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal., 23 (1992), 482-504.
doi: 10.1137/0523023. |
[22] |
Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions of Acoustics, Speech, and Signal Processing, 38 (1990), 814-824.
doi: 10.1109/29.56027. |
[23] |
Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing," Marcel Dekker, New York-Basel, 2004. |
[24] |
T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas," John Wiley & Sons, Hoboken, New Jersey, 2003.
doi: 10.1002/0471722839. |
show all references
References:
[1] |
A. L. Andrew, Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 22 (2006), 2069-2081.
doi: 10.1088/0266-5611/22/6/010. |
[2] |
S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, Cambridge, 1995. |
[3] |
S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation, J. Inv. Ill-Posed Probl., 5 (1997), 309-322.
doi: 10.1515/jiip.1997.5.4.309. |
[4] |
S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method), in "Distributed Parameter Systems: Modelling and Control" (Warsaw, 1995), Control and Cybernetics, 25 (1996), 429-440. |
[5] |
S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation, J. Inv. Ill-Posed Probl., 13 (2005), 317-330.
doi: 10.1515/156939405775201718. |
[6] |
M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian), Algebra i Analiz, 7 (1995), 3-32; translation in St. Petersburg Math. J., 7 (1996), 869-890. |
[7] |
A. Boumenir, The recovery of analytic potentials, Inverse Problems, 15 (1999), 1405-1423.
doi: 10.1088/0266-5611/15/6/302. |
[8] |
A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Am. Math. Soc., 138 (2010), 3911-3921.
doi: 10.1090/S0002-9939-2010-10297-6. |
[9] |
A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end, Numer. Funct. Anal. Optim., 31 (2010), 155-163.
doi: 10.1080/01630560903574993. |
[10] |
R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem, IMA J. Appl. Math., 15 (1995), 75-88. |
[11] |
V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.
doi: 10.1007/BF00392201. |
[12] |
V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006. |
[13] |
A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001. |
[14] |
B. M. Levitan, "Inverse Sturm-Liouville Problems," Translated from the Russian by O. Efimov, VSP, Zeist, 1987. |
[15] |
B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk, 19 (1964), 3-63. |
[16] |
B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators," Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I., 1975. |
[17] |
V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in "American Mathematical Society Translations," Series 2, Vol. 101, Six Papers in Analysis, American Mathematical Society, Providence, R.I., 1973. |
[18] |
J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev., 28 (1986), 53-72.
doi: 10.1137/1028003. |
[19] |
J. R. McLaughlin, Solving inverse problems with spectral data, in "Surveys on Solution Methods for Inverse Problems," 169-194, Springer, Vienna, 2000.
doi: 10.1007/978-3-7091-6296-5_10. |
[20] |
B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources, IMA J. Appl. Math., 52 (1994), 31-50.
doi: 10.1093/imamat/52.1.31. |
[21] |
B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal., 23 (1992), 482-504.
doi: 10.1137/0523023. |
[22] |
Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions of Acoustics, Speech, and Signal Processing, 38 (1990), 814-824.
doi: 10.1109/29.56027. |
[23] |
Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing," Marcel Dekker, New York-Basel, 2004. |
[24] |
T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas," John Wiley & Sons, Hoboken, New Jersey, 2003.
doi: 10.1002/0471722839. |
[1] |
Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015 |
[2] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[3] |
Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems and Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063 |
[4] |
Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 |
[5] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[6] |
Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems and Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002 |
[7] |
Shuli Chen, Zewen Wang, Guolin Chen. Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem. Inverse Problems and Imaging, 2021, 15 (4) : 619-639. doi: 10.3934/ipi.2021008 |
[8] |
Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011 |
[9] |
Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1 |
[10] |
Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems and Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073 |
[11] |
Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029 |
[12] |
Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 |
[13] |
Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems and Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036 |
[14] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[15] |
Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745 |
[16] |
Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297 |
[17] |
Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95 |
[18] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[19] |
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 |
[20] |
Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]