\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Recovery of the heat coefficient by two measurements

Abstract / Introduction Related Papers Cited by
  • We prove that it takes at most two measurements on the boundary to recover the heat coefficient of a one dimensional heat equation if its lower bound is known. Otherwise a finite number of measurements is needed. We also provide a new constructive algorithm for its recovery. Using asymptotics of eigenfunctions of the associated Sturm-Liouville problem we show that a hot spot initial condition generates all, except maybe a finite number of boundary spectral data. Then a counting argument based on the method of false position helps search for the number of missing boundary spectral data which is then unraveled by a finite number of measurements. Finally, we show how the boundary spectral data is converted into spectral data, and the well known Gelfand-Levitan-Gasymov inverse spectral theory of Sturm-Liouville operators yields the reconstruction of the heat coefficient uniquely.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 34K29.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. L. Andrew, Computing Sturm-Liouville potentials from two spectra, Inverse Problems, 22 (2006), 2069-2081.doi: 10.1088/0266-5611/22/6/010.

    [2]

    S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems," Cambridge University Press, Cambridge, 1995.

    [3]

    S. A. Avdonin, M. I. Belishev and Yu. Rozhkov, The BC-method in the inverse problem for the heat equation, J. Inv. Ill-Posed Probl., 5 (1997), 309-322.doi: 10.1515/jiip.1997.5.4.309.

    [4]

    S. A. Avdonin and M. I. Belishev, Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator (BC-method), in "Distributed Parameter Systems: Modelling and Control" (Warsaw, 1995), Control and Cybernetics, 25 (1996), 429-440.

    [5]

    S. A. Avdonin, S. Lenhart and V. Protopopescu, Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method. Inverse problems: Modeling and simulation, J. Inv. Ill-Posed Probl., 13 (2005), 317-330.doi: 10.1515/156939405775201718.

    [6]

    M. I. Belishev, A canonical model of a dynamical system with boundary control in the inverse heat conduction problem, (in Russian), Algebra i Analiz, 7 (1995), 3-32; translation in St. Petersburg Math. J., 7 (1996), 869-890.

    [7]

    A. Boumenir, The recovery of analytic potentials, Inverse Problems, 15 (1999), 1405-1423.doi: 10.1088/0266-5611/15/6/302.

    [8]

    A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Am. Math. Soc., 138 (2010), 3911-3921.doi: 10.1090/S0002-9939-2010-10297-6.

    [9]

    A. Boumenir and Vu Kim Tuan, Recovery of a heat equation by four measurements at one end, Numer. Funct. Anal. Optim., 31 (2010), 155-163.doi: 10.1080/01630560903574993.

    [10]

    R. H. Fabiano, R. Knobel and B. D. Lowe, A finite difference algorithm for an inverse Sturm-Liouville problem, IMA J. Appl. Math., 15 (1995), 75-88.

    [11]

    V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.doi: 10.1007/BF00392201.

    [12]

    V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Applied Mathematical Sciences, 127, Springer, New York, 2006.

    [13]

    A. Katchalov, Y. Kurylev and M. Lassas, "Inverse Boundary Spectral Problems," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.

    [14]

    B. M. Levitan, "Inverse Sturm-Liouville Problems," Translated from the Russian by O. Efimov, VSP, Zeist, 1987.

    [15]

    B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk, 19 (1964), 3-63.

    [16]

    B. M. Levitan and I. S. Sargsjan, "Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators," Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I., 1975.

    [17]

    V. A. Marčenko, Some questions in the theory of one-dimensional linear differential operators of the second order (1-104), in "American Mathematical Society Translations," Series 2, Vol. 101, Six Papers in Analysis, American Mathematical Society, Providence, R.I., 1973.

    [18]

    J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev., 28 (1986), 53-72.doi: 10.1137/1028003.

    [19]

    J. R. McLaughlin, Solving inverse problems with spectral data, in "Surveys on Solution Methods for Inverse Problems," 169-194, Springer, Vienna, 2000.doi: 10.1007/978-3-7091-6296-5_10.

    [20]

    B. D. Lowe and W. Rundell, The determination of a coefficient in a parabolic equation from input sources, IMA J. Appl. Math., 52 (1994), 31-50.doi: 10.1093/imamat/52.1.31.

    [21]

    B. D. Lowe, M. Pilant and W. Rundell, The recovery of potentials from finite spectral data, SIAM J. Math. Anal., 23 (1992), 482-504.doi: 10.1137/0523023.

    [22]

    Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions of Acoustics, Speech, and Signal Processing, 38 (1990), 814-824.doi: 10.1109/29.56027.

    [23]

    Y. Hua, A. B. Gershman and Q. Cheng, "High-Resolution and Robust Signal Processing," Marcel Dekker, New York-Basel, 2004.

    [24]

    T. K. Sarkar, M. C. Wicks, M. Salazar-Palma and R. J. Bonneau, "Smart Antennas," John Wiley & Sons, Hoboken, New Jersey, 2003.doi: 10.1002/0471722839.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return