• Previous Article
    Reconstructions from boundary measurements on admissible manifolds
  • IPI Home
  • This Issue
  • Next Article
    A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries
November  2011, 5(4): 843-858. doi: 10.3934/ipi.2011.5.843

Spectral shift functions in the fixed energy inverse scattering

1. 

Department of Mathematical Analysis, Institute of Mathematics, Budapest University of Technology and Economics, H 1111 Budapest, Műegyetem rkp. 3-9., Hungary

Received  June 2011 Revised  June 2011 Published  November 2011

In this paper the notion of the Krein spectral shift function is extended to the radial Schrödinger operator with fixed energy. Then we analyze the connections between the tail of the potential and the decay rate of the fixed-energy phase shifts. Finally we extend former results on the uniqueness of the fixed-energy inverse scattering problem to a general class of potentials.
Citation: Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems and Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843
References:
[1]

, Digital Library of Mathematical Functions, http://dlmf.nist.gov/idx/.

[2]

M. Abramowitz and I. Stegun, eds., "Handbook of Mathematical Functions," Dover Publications, New York, 1972.

[3]

V. Alfaro and T. Regge, "Potential Scattering," North-Holland, Amsterdam, 1965.

[4]

N. Aronszajn and W. F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. d'Analyse Math., 5 (1957), 321-388. doi: 10.1007/BF02937349.

[5]

A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi and G. Francesco, "Higher Transcendental Functions," Vol. II, Based on notes left by Harry Bateman, McGraw-Hill, 1953.

[6]

M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kreĭn and their further development, St. Petersburg Math. J., 4 (1993), 833-870.

[7]

K. Chadan and P. C. Sabatier, "Inverse Problems in Quantum Scattering Theory," Second edition, With a foreword by R. G. Newton, Texts in Monographs in Physics, Springer-Verlag, New York, 1989.

[8]

W. H. J. Fuchs, A generalization of Carlson's theorem, J. London Math. Soc., 21 (1946), 106-110. doi: 10.1112/jlms/s1-21.2.106.

[9]

M. Giffon G. Burdet and E. Predazzi, On the inversion problem in the $\lambda$-plane, Nuovo Cimento (10), 36 (1965), 1337-1347.

[10]

F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators, Acta Appl. Math., 39 (1995), 315-333. doi: 10.1007/BF00994640.

[11]

F. Gesztesy and K. A. Makarov, The $\Xi$ operator and its relation to Krein’s spectral shift function, J. Anal. Math., 81 (2000), 139-183. doi: 10.1007/BF02788988.

[12]

F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc., 348 (1996), 349-373. doi: 10.1090/S0002-9947-96-01525-5.

[13]

_____, The xi function, Acta Mathematica, 176 (1996), 49-71. doi: 10.1007/BF02547335.

[14]

P. G. Grinevich, Rational solitons of the Veselov–Novikov equations and reflectionless two-dimensional potentials at fixed energy, Teoret. Mat. Fiz., 69 (1986), 307-310.

[15]

G. M. Khenkin and R. G. Novikov, The delta-bar equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk, 42 (1987), 93-152, 255.

[16]

M. Horváth, Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line, Trans. Amer. Math. Soc., 358 (2006), 5161-5177. doi: 10.1090/S0002-9947-06-03996-1.

[17]

B. Ya. Levin, "Distribution of Zeros of Entire Functions," (in Russian), Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[18]

J.-J. Loeffel, On an inverse problem in quantum scattering theory, Ann. Inst. H. Poincaré Sect. A (N.S.), 8 (1968), 339-447.

[19]

A. Martin and Gy. Targonski, On the uniqueness of a potential fitting a scattering amplitude at a given energy, Nuovo Cimento (10), 20 (1961), 1182-1190. doi: 10.1007/BF02732527.

[20]

R. G. Newton, "Scattering Theory of Waves and Particles," Reprint of the 1982 second edition, Dover Publications, Inc., Mineola, NY, 2002.

[21]

R. G. Novikov, The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential, Commun. Math. Phys., 161 (1994), 569-595. doi: 10.1007/BF02101933.

[22]

_____, Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$, (in Russian), Funkts. Analiz i ego Prilozhenija, 22 (1988), 11-22.

[23]

A. G. Ramm, Recovery of the potential from fixed-energy scattering data, Inverse Problems, 4 (1988), 877-886. doi: 10.1088/0266-5611/4/3/020.

[24]

_____, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.

[25]

A. G. Ramm and P. D. Stefanov, Fixed energy inverse scattering for non-compactly supported potentials, Math. Comput. Modelling, 18 (1993), 57-64. doi: 10.1016/0895-7177(93)90079-E.

[26]

T. Regge, Introduction to complex orbital momenta, Nuovo Cimento (10), 14 (1959), 951-976. doi: 10.1007/BF02728177.

[27]

A. Rybkin, On the trace approach to the inverse scattering problem in dimension one, SIAM J. Math. Anal., 32 (2001), 1248-1264. doi: 10.1137/S0036141000365620.

[28]

B. Simon, Spectral analysis of rank one perturbations and applications, in "Mathematical Quantum Theory. II. Schrödinger Operators" (Vancouver, BC, 1993), CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence, RI, (1995), 109-149.

[29]

G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944.

[30]

R. Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory, Inverse Problems, 7 (1991), 927-938. doi: 10.1088/0266-5611/7/6/012.

[31]

R. Weder and D. Yafaev, On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity, Inverse Problems, 21 (2005), 1937-1952. doi: 10.1088/0266-5611/21/6/009.

show all references

References:
[1]

, Digital Library of Mathematical Functions, http://dlmf.nist.gov/idx/.

[2]

M. Abramowitz and I. Stegun, eds., "Handbook of Mathematical Functions," Dover Publications, New York, 1972.

[3]

V. Alfaro and T. Regge, "Potential Scattering," North-Holland, Amsterdam, 1965.

[4]

N. Aronszajn and W. F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. d'Analyse Math., 5 (1957), 321-388. doi: 10.1007/BF02937349.

[5]

A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi and G. Francesco, "Higher Transcendental Functions," Vol. II, Based on notes left by Harry Bateman, McGraw-Hill, 1953.

[6]

M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kreĭn and their further development, St. Petersburg Math. J., 4 (1993), 833-870.

[7]

K. Chadan and P. C. Sabatier, "Inverse Problems in Quantum Scattering Theory," Second edition, With a foreword by R. G. Newton, Texts in Monographs in Physics, Springer-Verlag, New York, 1989.

[8]

W. H. J. Fuchs, A generalization of Carlson's theorem, J. London Math. Soc., 21 (1946), 106-110. doi: 10.1112/jlms/s1-21.2.106.

[9]

M. Giffon G. Burdet and E. Predazzi, On the inversion problem in the $\lambda$-plane, Nuovo Cimento (10), 36 (1965), 1337-1347.

[10]

F. Gesztesy and H. Holden, On new trace formulae for Schrödinger operators, Acta Appl. Math., 39 (1995), 315-333. doi: 10.1007/BF00994640.

[11]

F. Gesztesy and K. A. Makarov, The $\Xi$ operator and its relation to Krein’s spectral shift function, J. Anal. Math., 81 (2000), 139-183. doi: 10.1007/BF02788988.

[12]

F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc., 348 (1996), 349-373. doi: 10.1090/S0002-9947-96-01525-5.

[13]

_____, The xi function, Acta Mathematica, 176 (1996), 49-71. doi: 10.1007/BF02547335.

[14]

P. G. Grinevich, Rational solitons of the Veselov–Novikov equations and reflectionless two-dimensional potentials at fixed energy, Teoret. Mat. Fiz., 69 (1986), 307-310.

[15]

G. M. Khenkin and R. G. Novikov, The delta-bar equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk, 42 (1987), 93-152, 255.

[16]

M. Horváth, Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line, Trans. Amer. Math. Soc., 358 (2006), 5161-5177. doi: 10.1090/S0002-9947-06-03996-1.

[17]

B. Ya. Levin, "Distribution of Zeros of Entire Functions," (in Russian), Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[18]

J.-J. Loeffel, On an inverse problem in quantum scattering theory, Ann. Inst. H. Poincaré Sect. A (N.S.), 8 (1968), 339-447.

[19]

A. Martin and Gy. Targonski, On the uniqueness of a potential fitting a scattering amplitude at a given energy, Nuovo Cimento (10), 20 (1961), 1182-1190. doi: 10.1007/BF02732527.

[20]

R. G. Newton, "Scattering Theory of Waves and Particles," Reprint of the 1982 second edition, Dover Publications, Inc., Mineola, NY, 2002.

[21]

R. G. Novikov, The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential, Commun. Math. Phys., 161 (1994), 569-595. doi: 10.1007/BF02101933.

[22]

_____, Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$, (in Russian), Funkts. Analiz i ego Prilozhenija, 22 (1988), 11-22.

[23]

A. G. Ramm, Recovery of the potential from fixed-energy scattering data, Inverse Problems, 4 (1988), 877-886. doi: 10.1088/0266-5611/4/3/020.

[24]

_____, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.

[25]

A. G. Ramm and P. D. Stefanov, Fixed energy inverse scattering for non-compactly supported potentials, Math. Comput. Modelling, 18 (1993), 57-64. doi: 10.1016/0895-7177(93)90079-E.

[26]

T. Regge, Introduction to complex orbital momenta, Nuovo Cimento (10), 14 (1959), 951-976. doi: 10.1007/BF02728177.

[27]

A. Rybkin, On the trace approach to the inverse scattering problem in dimension one, SIAM J. Math. Anal., 32 (2001), 1248-1264. doi: 10.1137/S0036141000365620.

[28]

B. Simon, Spectral analysis of rank one perturbations and applications, in "Mathematical Quantum Theory. II. Schrödinger Operators" (Vancouver, BC, 1993), CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence, RI, (1995), 109-149.

[29]

G. N. Watson, "A Treatise on the Theory of Bessel Functions," Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944.

[30]

R. Weder, Global uniqueness at fixed energy in multidimensional inverse scattering theory, Inverse Problems, 7 (1991), 927-938. doi: 10.1088/0266-5611/7/6/012.

[31]

R. Weder and D. Yafaev, On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity, Inverse Problems, 21 (2005), 1937-1952. doi: 10.1088/0266-5611/21/6/009.

[1]

Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems and Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217

[2]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems and Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[3]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[4]

Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031

[5]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[6]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[7]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[8]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems and Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[9]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems and Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[10]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems and Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[11]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure and Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[12]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations and Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[13]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[14]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[15]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[16]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[17]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems and Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[18]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[19]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3803-3819. doi: 10.3934/dcdss.2021019

[20]

Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3637-3654. doi: 10.3934/cpaa.2021124

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]