February  2012, 6(1): 1-23. doi: 10.3934/ipi.2012.6.1

Small volume asymptotics for anisotropic elastic inclusions

1. 

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5 - 00185 Roma, Italy

2. 

Laboratoire Jean Kuntzmann, Université de Joseph Fourier, CNRS, 38041 Grenoble Cedex 9, France

3. 

Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni 67A - 50134 Firenze, Italy

4. 

Mathematics Department, Penn State University, University Park, PA, 16802, United States

Received  May 2011 Revised  November 2011 Published  February 2012

We derive asymptotic expansions for the displacement at the boundary of a smooth, elastic body in the presence of small inhomogeneities. Both the body and the inclusions are allowed to be anisotropic. This work extends prior work of Capdeboscq and Vogelius (Math. Modeling Num. Anal. 37, 2003) for the conductivity case. In particular, we obtain an asymptotic expansion of the difference between the displacements at the boundary with and without inclusions, under Neumann boundary conditions, to first order in the measure of the inclusions. We impose no geometric conditions on the inclusions, which need only be measurable sets. The first-order correction contains a moment or polarization tensor $\mathbb{M}$ that encodes the effect of the inclusions. We also derive some basic properties of this tensor $\mathbb{M}$. In the case of thin, strip-like, planar inhomogeneities we obtain a formula for $\mathbb{M}$ only in terms of the elasticity tensors, which we assume strongly convex, their inverses, and a frame on the curve that supports the inclusion. We prove uniqueness of $\mathbb{M}$ in this setting and recover the formula previously obtained by Beretta and Francini (SIAM J. Math. Anal., 38, 2006).
Citation: Elena Beretta, Eric Bonnetier, Elisa Francini, Anna L. Mazzucato. Small volume asymptotics for anisotropic elastic inclusions. Inverse Problems & Imaging, 2012, 6 (1) : 1-23. doi: 10.3934/ipi.2012.6.1
References:
[1]

H. Ammari and H. Kang, "Reconstruction of Small Inhomogeneities from Boundary Measurements,'', Lecture Notes in Mathematics, 1846 (2004).   Google Scholar

[2]

H. Ammari, H. Kang, G. Nakamura and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion,, J. Elasticity, 67 (2002), 97.  doi: 10.1023/A:1023940025757.  Google Scholar

[3]

E. Beretta and E. Francini, An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities,, SIAM J. Math. Anal., 38 (2006), 1249.  doi: 10.1137/050648596.  Google Scholar

[4]

S. Campanato, "Sistemi ellittici in forma divergenza. Regolaritá all'interno,'', (Italian) Quaderni, (1980).   Google Scholar

[5]

Y. Capdeboscq and H. Kang, Improved Hashin-Shtrikman bounds for elastic moment tensors and an application,, Appl. Math. Optim., 57 (2008), 263.  doi: 10.1007/s00245-007-9022-9.  Google Scholar

[6]

Y. Capdeboscq and M. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction,, M2AN Math. Modelling Num. Anal., 37 (2003), 159.  doi: 10.1051/m2an:2003014.  Google Scholar

[7]

Y. Capdeboscq and M. Vogelius, A review of some recent work on impedance imaging for inhomogeneities of low volume fraction,, in, 362 (2004), 69.   Google Scholar

[8]

Y. Capdeboscq and M. Vogelius, Pointwise polarization tensor bounds, and applications to voltage perturbations caused by thin inhomogeneities,, Asymptot. Anal., 50 (2006), 175.   Google Scholar

[9]

G. Fichera, Existence theorems in elasticity,, in, (1972), 347.   Google Scholar

[10]

G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity,, Arch. Rational Mech. Anal., 94 (1986), 307.  doi: 10.1007/BF00280908.  Google Scholar

[11]

M. Fuchs, The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition,, Manuscripta Math., 46 (1984), 97.  doi: 10.1007/BF01185197.  Google Scholar

[12]

Y. Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material,, Comm. Pure Appl. Math., 56 (2003), 892.  doi: 10.1002/cpa.10079.  Google Scholar

[13]

Y. Y. Li and M. Vogelius, Gradient estimates for solutions of divergence form elliptic equations with discontinuous coefficients,, Arch. Rat. Mech. Anal., 153 (2000), 91.  doi: 10.1007/s002050000082.  Google Scholar

[14]

R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites,, J. Mech. Phys. Solids, 41 (1993), 809.  doi: 10.1016/0022-5096(93)90001-V.  Google Scholar

[15]

G. W. Milton, "The Theory of Composites,'', Cambridge Monographs on Applied and Computational Mathematics, 6 (2002).   Google Scholar

[16]

O. A. Oleĭnik, A. S. Shamaev and G. A. Yosifian, "Mathematical Problems in Elasticity and Homogenization,'', Studies in Mathematics and its Applications, 26 (1992).   Google Scholar

[17]

M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter,, M2AN Math. Model. Numer. Anal., 34 (2000), 732.   Google Scholar

show all references

References:
[1]

H. Ammari and H. Kang, "Reconstruction of Small Inhomogeneities from Boundary Measurements,'', Lecture Notes in Mathematics, 1846 (2004).   Google Scholar

[2]

H. Ammari, H. Kang, G. Nakamura and K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion,, J. Elasticity, 67 (2002), 97.  doi: 10.1023/A:1023940025757.  Google Scholar

[3]

E. Beretta and E. Francini, An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities,, SIAM J. Math. Anal., 38 (2006), 1249.  doi: 10.1137/050648596.  Google Scholar

[4]

S. Campanato, "Sistemi ellittici in forma divergenza. Regolaritá all'interno,'', (Italian) Quaderni, (1980).   Google Scholar

[5]

Y. Capdeboscq and H. Kang, Improved Hashin-Shtrikman bounds for elastic moment tensors and an application,, Appl. Math. Optim., 57 (2008), 263.  doi: 10.1007/s00245-007-9022-9.  Google Scholar

[6]

Y. Capdeboscq and M. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction,, M2AN Math. Modelling Num. Anal., 37 (2003), 159.  doi: 10.1051/m2an:2003014.  Google Scholar

[7]

Y. Capdeboscq and M. Vogelius, A review of some recent work on impedance imaging for inhomogeneities of low volume fraction,, in, 362 (2004), 69.   Google Scholar

[8]

Y. Capdeboscq and M. Vogelius, Pointwise polarization tensor bounds, and applications to voltage perturbations caused by thin inhomogeneities,, Asymptot. Anal., 50 (2006), 175.   Google Scholar

[9]

G. Fichera, Existence theorems in elasticity,, in, (1972), 347.   Google Scholar

[10]

G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity,, Arch. Rational Mech. Anal., 94 (1986), 307.  doi: 10.1007/BF00280908.  Google Scholar

[11]

M. Fuchs, The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition,, Manuscripta Math., 46 (1984), 97.  doi: 10.1007/BF01185197.  Google Scholar

[12]

Y. Y. Li and L. Nirenberg, Estimates for elliptic systems from composite material,, Comm. Pure Appl. Math., 56 (2003), 892.  doi: 10.1002/cpa.10079.  Google Scholar

[13]

Y. Y. Li and M. Vogelius, Gradient estimates for solutions of divergence form elliptic equations with discontinuous coefficients,, Arch. Rat. Mech. Anal., 153 (2000), 91.  doi: 10.1007/s002050000082.  Google Scholar

[14]

R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random composites,, J. Mech. Phys. Solids, 41 (1993), 809.  doi: 10.1016/0022-5096(93)90001-V.  Google Scholar

[15]

G. W. Milton, "The Theory of Composites,'', Cambridge Monographs on Applied and Computational Mathematics, 6 (2002).   Google Scholar

[16]

O. A. Oleĭnik, A. S. Shamaev and G. A. Yosifian, "Mathematical Problems in Elasticity and Homogenization,'', Studies in Mathematics and its Applications, 26 (1992).   Google Scholar

[17]

M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter,, M2AN Math. Model. Numer. Anal., 34 (2000), 732.   Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[3]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (13)

[Back to Top]