\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The order of convergence for Landweber Scheme with $\alpha,\beta$-rule

Abstract Related Papers Cited by
  • The Landweber scheme is widely used in various image reconstruction problems. In previous works, $\alpha,\beta$-rule is suggested to stop the Landweber iteration so as to get proper iteration results. The order of convergence of discrepancy principal (DP rule), which is a special case of $\alpha,\beta$-rule, with constant relaxation coefficient $\lambda$ satisfying $0<\lambda\sigma_1^2<1,~(\|A\|_{V,W}=\sigma_1>0)$ has been studied. A sufficient condition for convergence of Landweber scheme is that the value $\lambda_m\sigma_1^2$ should be lied in a closed interval, i.e. $0<\varepsilon\leq\lambda_m\sigma_1^2\leq2-\varepsilon$, $(0<\varepsilon<1)$. In this paper, we mainly investigate the order of convergence of the $\alpha,\beta$-rule with variable relaxation coefficient $\lambda_m$ satisfying $0 < \varepsilon\leq\lambda_m \sigma_1^2 \leq 2-\varepsilon$. According to the order of convergence, we can conclude that $\alpha,\beta$-rule is the optimal rule for the Landweber scheme.
    Mathematics Subject Classification: Primary: 65F10; Secondary: 65G20, 65B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Censor and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem, SIAM Journal on Matrix Analysis and Applications, 24 (2002), 40-58.doi: 10.1137/S089547980138705X.

    [2]

    M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction, IEEE Transactions on Medical Imaging, 22 (2003), 569-579.doi: 10.1109/TMI.2003.812253.

    [3]

    A. Andersen and A. Kak, Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), 81-94.doi: 10.1016/0161-7346(84)90008-7.

    [4]

    G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica, series II, Anno IX, XVI (1938), 326-333.

    [5]

    Y. Censor, D. Gordon and R. Gordon, Component avering: An efficient iterative parallel algorithm for large and sparse unstructured problems, Parallel Computing, 27 (2001), 777-808.doi: 10.1016/S0167-8191(00)00100-9.

    [6]

    L. Landweber, An iteration formula for Fredholm integral equations of the first kind, American Journal of Mathematics, 73 (1951), 615-624.doi: 10.2307/2372313.

    [7]

    R. J. Santos, Equivalence of regularization and truncated iteration for general ill-posed problems, Linear Algebra and its Applications, 236 (1996), 25-33.doi: 10.1016/0024-3795(94)00114-6.

    [8]

    F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction," SIAM Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.

    [9]

    Y. Xiao, D. Michalski, Y. Censor and J. M. Galvin, Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms, Physics in Medicine and Biology, 49 (2004), 3227-3245.doi: 10.1088/0031-9155/49/14/015.

    [10]

    P .D. Acton, S. R. Choi, K. Plossl and H. F. Kung, Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography, European Journal of Nuclear Medicine and Molecular Imaging, 29 (2002), 691-698.doi: 10.1007/s00259-002-0903-5.

    [11]

    W. Q. Yang and L. H. Peng, Image reconstruction algorithms for electrical capacitance tomography, Measurement Science & Technology, 14 (2003), R1-R13.doi: 10.1088/0957-0233/14/1/201.

    [12]

    J. Wang and Y. B. Zheng, On the convergence of generalized simultaneous iterative reconstruction algorithms, IEEE Transactions on Image Processing, 16 (2007), 1-6.doi: 10.1109/TIP.2006.887725.

    [13]

    G. Qu, C. Wang and M. Jiang, Necessary and sufficient convergence conditions for algebraic image reconstruction algorithms, IEEE Transactions on Image Processing, 18 (2009), 435-440.doi: 10.1109/TIP.2008.2008076.

    [14]

    G. Qu and M. Jiang, Landweber scheme for compact operator equation in Hilbert space and its applications, Communications in Numerical Methods in Engineering, 25 (2009), 771-786.doi: 10.1002/cnm.1196.

    [15]

    T. Zhang and B. Yu, Boosting with early stopping: Convergence and consistency, Annals of Statistics, 33 (2005), 1538-1579.doi: 10.1214/009053605000000255.

    [16]

    T. Elfving and T. Nikazad, Stopping rules for Landweber-type interation, Inverse Problems, 23 (2007), 1417-1432.doi: 10.1088/0266-5611/23/4/004.

    [17]

    A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems," Applied Mathematical Sciences, 120, Springer-Verlag, New York, 1996.

    [18]

    T. Hein and K. Kazimierski, Modifed Landweber iteration in Banach spaces-Convergence and convergence rates, Numerical Functional Analysis and Optimization, 31 (2010), 1158-1184.

    [19]

    M. Jiang, Iterative Algebraic Algorithms for Image Reconstruction, in " Medical Imaging Systems Technology," Vol. I, World Scientific, Singapore, (2005), 351-382.

    [20]

    C. W. Groetsch, "Inverse Problems in the Mathematical Sciences (Theory & Practice of Applied Geophysics)," Informatica International, Inc., 1993.

    [21]

    S. Aja-Fernández, R. Estépar, C. Alberola-López and C. Westin, Image quality assessment based on local variance, Proceedings IEEE Engineering in Medicine and Biology Society, 1 (2006), 4815-4818.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return