February  2012, 6(1): 133-146. doi: 10.3934/ipi.2012.6.133

The order of convergence for Landweber Scheme with $\alpha,\beta$-rule

1. 

Department of Mathematics, Shanghai Maritime University, Shanghai 200135, China

2. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  February 2011 Revised  September 2011 Published  February 2012

The Landweber scheme is widely used in various image reconstruction problems. In previous works, $\alpha,\beta$-rule is suggested to stop the Landweber iteration so as to get proper iteration results. The order of convergence of discrepancy principal (DP rule), which is a special case of $\alpha,\beta$-rule, with constant relaxation coefficient $\lambda$ satisfying $0<\lambda\sigma_1^2<1,~(\|A\|_{V,W}=\sigma_1>0)$ has been studied. A sufficient condition for convergence of Landweber scheme is that the value $\lambda_m\sigma_1^2$ should be lied in a closed interval, i.e. $0<\varepsilon\leq\lambda_m\sigma_1^2\leq2-\varepsilon$, $(0<\varepsilon<1)$. In this paper, we mainly investigate the order of convergence of the $\alpha,\beta$-rule with variable relaxation coefficient $\lambda_m$ satisfying $0 < \varepsilon\leq\lambda_m \sigma_1^2 \leq 2-\varepsilon$. According to the order of convergence, we can conclude that $\alpha,\beta$-rule is the optimal rule for the Landweber scheme.
Citation: Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133
References:
[1]

SIAM Journal on Matrix Analysis and Applications, 24 (2002), 40-58. doi: 10.1137/S089547980138705X.  Google Scholar

[2]

IEEE Transactions on Medical Imaging, 22 (2003), 569-579. doi: 10.1109/TMI.2003.812253.  Google Scholar

[3]

Ultrasonic Imaging, 6 (1984), 81-94. doi: 10.1016/0161-7346(84)90008-7.  Google Scholar

[4]

La Ricerca Scientifica, series II, Anno IX, XVI (1938), 326-333. Google Scholar

[5]

Parallel Computing, 27 (2001), 777-808. doi: 10.1016/S0167-8191(00)00100-9.  Google Scholar

[6]

American Journal of Mathematics, 73 (1951), 615-624. doi: 10.2307/2372313.  Google Scholar

[7]

Linear Algebra and its Applications, 236 (1996), 25-33. doi: 10.1016/0024-3795(94)00114-6.  Google Scholar

[8]

SIAM Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.  Google Scholar

[9]

Physics in Medicine and Biology, 49 (2004), 3227-3245. doi: 10.1088/0031-9155/49/14/015.  Google Scholar

[10]

European Journal of Nuclear Medicine and Molecular Imaging, 29 (2002), 691-698. doi: 10.1007/s00259-002-0903-5.  Google Scholar

[11]

Measurement Science & Technology, 14 (2003), R1-R13. doi: 10.1088/0957-0233/14/1/201.  Google Scholar

[12]

IEEE Transactions on Image Processing, 16 (2007), 1-6. doi: 10.1109/TIP.2006.887725.  Google Scholar

[13]

IEEE Transactions on Image Processing, 18 (2009), 435-440. doi: 10.1109/TIP.2008.2008076.  Google Scholar

[14]

Communications in Numerical Methods in Engineering, 25 (2009), 771-786. doi: 10.1002/cnm.1196.  Google Scholar

[15]

Annals of Statistics, 33 (2005), 1538-1579. doi: 10.1214/009053605000000255.  Google Scholar

[16]

Inverse Problems, 23 (2007), 1417-1432. doi: 10.1088/0266-5611/23/4/004.  Google Scholar

[17]

Applied Mathematical Sciences, 120, Springer-Verlag, New York, 1996.  Google Scholar

[18]

Numerical Functional Analysis and Optimization, 31 (2010), 1158-1184.  Google Scholar

[19]

World Scientific, Singapore, (2005), 351-382. Google Scholar

[20]

Informatica International, Inc., 1993. Google Scholar

[21]

Proceedings IEEE Engineering in Medicine and Biology Society, 1 (2006), 4815-4818. Google Scholar

show all references

References:
[1]

SIAM Journal on Matrix Analysis and Applications, 24 (2002), 40-58. doi: 10.1137/S089547980138705X.  Google Scholar

[2]

IEEE Transactions on Medical Imaging, 22 (2003), 569-579. doi: 10.1109/TMI.2003.812253.  Google Scholar

[3]

Ultrasonic Imaging, 6 (1984), 81-94. doi: 10.1016/0161-7346(84)90008-7.  Google Scholar

[4]

La Ricerca Scientifica, series II, Anno IX, XVI (1938), 326-333. Google Scholar

[5]

Parallel Computing, 27 (2001), 777-808. doi: 10.1016/S0167-8191(00)00100-9.  Google Scholar

[6]

American Journal of Mathematics, 73 (1951), 615-624. doi: 10.2307/2372313.  Google Scholar

[7]

Linear Algebra and its Applications, 236 (1996), 25-33. doi: 10.1016/0024-3795(94)00114-6.  Google Scholar

[8]

SIAM Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.  Google Scholar

[9]

Physics in Medicine and Biology, 49 (2004), 3227-3245. doi: 10.1088/0031-9155/49/14/015.  Google Scholar

[10]

European Journal of Nuclear Medicine and Molecular Imaging, 29 (2002), 691-698. doi: 10.1007/s00259-002-0903-5.  Google Scholar

[11]

Measurement Science & Technology, 14 (2003), R1-R13. doi: 10.1088/0957-0233/14/1/201.  Google Scholar

[12]

IEEE Transactions on Image Processing, 16 (2007), 1-6. doi: 10.1109/TIP.2006.887725.  Google Scholar

[13]

IEEE Transactions on Image Processing, 18 (2009), 435-440. doi: 10.1109/TIP.2008.2008076.  Google Scholar

[14]

Communications in Numerical Methods in Engineering, 25 (2009), 771-786. doi: 10.1002/cnm.1196.  Google Scholar

[15]

Annals of Statistics, 33 (2005), 1538-1579. doi: 10.1214/009053605000000255.  Google Scholar

[16]

Inverse Problems, 23 (2007), 1417-1432. doi: 10.1088/0266-5611/23/4/004.  Google Scholar

[17]

Applied Mathematical Sciences, 120, Springer-Verlag, New York, 1996.  Google Scholar

[18]

Numerical Functional Analysis and Optimization, 31 (2010), 1158-1184.  Google Scholar

[19]

World Scientific, Singapore, (2005), 351-382. Google Scholar

[20]

Informatica International, Inc., 1993. Google Scholar

[21]

Proceedings IEEE Engineering in Medicine and Biology Society, 1 (2006), 4815-4818. Google Scholar

[1]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[2]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[3]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[4]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[5]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[6]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[7]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[8]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[9]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021070

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[12]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[13]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[14]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[15]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[16]

Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[19]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[20]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]