February  2012, 6(1): 133-146. doi: 10.3934/ipi.2012.6.133

The order of convergence for Landweber Scheme with $\alpha,\beta$-rule

1. 

Department of Mathematics, Shanghai Maritime University, Shanghai 200135, China

2. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Received  February 2011 Revised  September 2011 Published  February 2012

The Landweber scheme is widely used in various image reconstruction problems. In previous works, $\alpha,\beta$-rule is suggested to stop the Landweber iteration so as to get proper iteration results. The order of convergence of discrepancy principal (DP rule), which is a special case of $\alpha,\beta$-rule, with constant relaxation coefficient $\lambda$ satisfying $0<\lambda\sigma_1^2<1,~(\|A\|_{V,W}=\sigma_1>0)$ has been studied. A sufficient condition for convergence of Landweber scheme is that the value $\lambda_m\sigma_1^2$ should be lied in a closed interval, i.e. $0<\varepsilon\leq\lambda_m\sigma_1^2\leq2-\varepsilon$, $(0<\varepsilon<1)$. In this paper, we mainly investigate the order of convergence of the $\alpha,\beta$-rule with variable relaxation coefficient $\lambda_m$ satisfying $0 < \varepsilon\leq\lambda_m \sigma_1^2 \leq 2-\varepsilon$. According to the order of convergence, we can conclude that $\alpha,\beta$-rule is the optimal rule for the Landweber scheme.
Citation: Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133
References:
[1]

Y. Censor and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem,, SIAM Journal on Matrix Analysis and Applications, 24 (2002), 40.  doi: 10.1137/S089547980138705X.  Google Scholar

[2]

M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,, IEEE Transactions on Medical Imaging, 22 (2003), 569.  doi: 10.1109/TMI.2003.812253.  Google Scholar

[3]

A. Andersen and A. Kak, Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,, Ultrasonic Imaging, 6 (1984), 81.  doi: 10.1016/0161-7346(84)90008-7.  Google Scholar

[4]

G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,, La Ricerca Scientifica, XVI (1938), 326.   Google Scholar

[5]

Y. Censor, D. Gordon and R. Gordon, Component avering: An efficient iterative parallel algorithm for large and sparse unstructured problems,, Parallel Computing, 27 (2001), 777.  doi: 10.1016/S0167-8191(00)00100-9.  Google Scholar

[6]

L. Landweber, An iteration formula for Fredholm integral equations of the first kind,, American Journal of Mathematics, 73 (1951), 615.  doi: 10.2307/2372313.  Google Scholar

[7]

R. J. Santos, Equivalence of regularization and truncated iteration for general ill-posed problems,, Linear Algebra and its Applications, 236 (1996), 25.  doi: 10.1016/0024-3795(94)00114-6.  Google Scholar

[8]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM Monographs on Mathematical Modeling and Computation, (2001).   Google Scholar

[9]

Y. Xiao, D. Michalski, Y. Censor and J. M. Galvin, Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms,, Physics in Medicine and Biology, 49 (2004), 3227.  doi: 10.1088/0031-9155/49/14/015.  Google Scholar

[10]

P .D. Acton, S. R. Choi, K. Plossl and H. F. Kung, Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography,, European Journal of Nuclear Medicine and Molecular Imaging, 29 (2002), 691.  doi: 10.1007/s00259-002-0903-5.  Google Scholar

[11]

W. Q. Yang and L. H. Peng, Image reconstruction algorithms for electrical capacitance tomography,, Measurement Science & Technology, 14 (2003).  doi: 10.1088/0957-0233/14/1/201.  Google Scholar

[12]

J. Wang and Y. B. Zheng, On the convergence of generalized simultaneous iterative reconstruction algorithms,, IEEE Transactions on Image Processing, 16 (2007), 1.  doi: 10.1109/TIP.2006.887725.  Google Scholar

[13]

G. Qu, C. Wang and M. Jiang, Necessary and sufficient convergence conditions for algebraic image reconstruction algorithms,, IEEE Transactions on Image Processing, 18 (2009), 435.  doi: 10.1109/TIP.2008.2008076.  Google Scholar

[14]

G. Qu and M. Jiang, Landweber scheme for compact operator equation in Hilbert space and its applications,, Communications in Numerical Methods in Engineering, 25 (2009), 771.  doi: 10.1002/cnm.1196.  Google Scholar

[15]

T. Zhang and B. Yu, Boosting with early stopping: Convergence and consistency,, Annals of Statistics, 33 (2005), 1538.  doi: 10.1214/009053605000000255.  Google Scholar

[16]

T. Elfving and T. Nikazad, Stopping rules for Landweber-type interation,, Inverse Problems, 23 (2007), 1417.  doi: 10.1088/0266-5611/23/4/004.  Google Scholar

[17]

A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems,", Applied Mathematical Sciences, 120 (1996).   Google Scholar

[18]

T. Hein and K. Kazimierski, Modifed Landweber iteration in Banach spaces-Convergence and convergence rates,, Numerical Functional Analysis and Optimization, 31 (2010), 1158.   Google Scholar

[19]

M. Jiang, Iterative Algebraic Algorithms for Image Reconstruction, in " Medical Imaging Systems Technology," Vol. I,, World Scientific, (2005), 351.   Google Scholar

[20]

C. W. Groetsch, "Inverse Problems in the Mathematical Sciences (Theory & Practice of Applied Geophysics),", Informatica International, (1993).   Google Scholar

[21]

S. Aja-Fernández, R. Estépar, C. Alberola-López and C. Westin, Image quality assessment based on local variance,, Proceedings IEEE Engineering in Medicine and Biology Society, 1 (2006), 4815.   Google Scholar

show all references

References:
[1]

Y. Censor and T. Elfving, Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem,, SIAM Journal on Matrix Analysis and Applications, 24 (2002), 40.  doi: 10.1137/S089547980138705X.  Google Scholar

[2]

M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,, IEEE Transactions on Medical Imaging, 22 (2003), 569.  doi: 10.1109/TMI.2003.812253.  Google Scholar

[3]

A. Andersen and A. Kak, Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,, Ultrasonic Imaging, 6 (1984), 81.  doi: 10.1016/0161-7346(84)90008-7.  Google Scholar

[4]

G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,, La Ricerca Scientifica, XVI (1938), 326.   Google Scholar

[5]

Y. Censor, D. Gordon and R. Gordon, Component avering: An efficient iterative parallel algorithm for large and sparse unstructured problems,, Parallel Computing, 27 (2001), 777.  doi: 10.1016/S0167-8191(00)00100-9.  Google Scholar

[6]

L. Landweber, An iteration formula for Fredholm integral equations of the first kind,, American Journal of Mathematics, 73 (1951), 615.  doi: 10.2307/2372313.  Google Scholar

[7]

R. J. Santos, Equivalence of regularization and truncated iteration for general ill-posed problems,, Linear Algebra and its Applications, 236 (1996), 25.  doi: 10.1016/0024-3795(94)00114-6.  Google Scholar

[8]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM Monographs on Mathematical Modeling and Computation, (2001).   Google Scholar

[9]

Y. Xiao, D. Michalski, Y. Censor and J. M. Galvin, Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms,, Physics in Medicine and Biology, 49 (2004), 3227.  doi: 10.1088/0031-9155/49/14/015.  Google Scholar

[10]

P .D. Acton, S. R. Choi, K. Plossl and H. F. Kung, Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography,, European Journal of Nuclear Medicine and Molecular Imaging, 29 (2002), 691.  doi: 10.1007/s00259-002-0903-5.  Google Scholar

[11]

W. Q. Yang and L. H. Peng, Image reconstruction algorithms for electrical capacitance tomography,, Measurement Science & Technology, 14 (2003).  doi: 10.1088/0957-0233/14/1/201.  Google Scholar

[12]

J. Wang and Y. B. Zheng, On the convergence of generalized simultaneous iterative reconstruction algorithms,, IEEE Transactions on Image Processing, 16 (2007), 1.  doi: 10.1109/TIP.2006.887725.  Google Scholar

[13]

G. Qu, C. Wang and M. Jiang, Necessary and sufficient convergence conditions for algebraic image reconstruction algorithms,, IEEE Transactions on Image Processing, 18 (2009), 435.  doi: 10.1109/TIP.2008.2008076.  Google Scholar

[14]

G. Qu and M. Jiang, Landweber scheme for compact operator equation in Hilbert space and its applications,, Communications in Numerical Methods in Engineering, 25 (2009), 771.  doi: 10.1002/cnm.1196.  Google Scholar

[15]

T. Zhang and B. Yu, Boosting with early stopping: Convergence and consistency,, Annals of Statistics, 33 (2005), 1538.  doi: 10.1214/009053605000000255.  Google Scholar

[16]

T. Elfving and T. Nikazad, Stopping rules for Landweber-type interation,, Inverse Problems, 23 (2007), 1417.  doi: 10.1088/0266-5611/23/4/004.  Google Scholar

[17]

A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems,", Applied Mathematical Sciences, 120 (1996).   Google Scholar

[18]

T. Hein and K. Kazimierski, Modifed Landweber iteration in Banach spaces-Convergence and convergence rates,, Numerical Functional Analysis and Optimization, 31 (2010), 1158.   Google Scholar

[19]

M. Jiang, Iterative Algebraic Algorithms for Image Reconstruction, in " Medical Imaging Systems Technology," Vol. I,, World Scientific, (2005), 351.   Google Scholar

[20]

C. W. Groetsch, "Inverse Problems in the Mathematical Sciences (Theory & Practice of Applied Geophysics),", Informatica International, (1993).   Google Scholar

[21]

S. Aja-Fernández, R. Estépar, C. Alberola-López and C. Westin, Image quality assessment based on local variance,, Proceedings IEEE Engineering in Medicine and Biology Society, 1 (2006), 4815.   Google Scholar

[1]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[2]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[3]

Josef Diblík, Klara Janglajew, Mária Kúdelčíková. An explicit coefficient criterion for the existence of positive solutions to the linear advanced equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2461-2467. doi: 10.3934/dcdsb.2014.19.2461

[4]

Stefan Kindermann, Andreas Neubauer. On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization. Inverse Problems & Imaging, 2008, 2 (2) : 291-299. doi: 10.3934/ipi.2008.2.291

[5]

Jiann-Sheng Jiang, Kung-Hwang Kuo, Chi-Kun Lin. Homogenization of second order equation with spatial dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 303-313. doi: 10.3934/dcds.2005.12.303

[6]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[7]

Ting-Hao Hsu, Gail S. K. Wolkowicz. A criterion for the existence of relaxation oscillations with applications to predator-prey systems and an epidemic model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019219

[8]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[9]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[10]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

[11]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[12]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

[13]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[14]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[15]

Wenqing Bao, Xianyi Wu, Xian Zhou. Optimal stopping problems with restricted stopping times. Journal of Industrial & Management Optimization, 2017, 13 (1) : 399-411. doi: 10.3934/jimo.2016023

[16]

Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243

[17]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[18]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic & Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[19]

Yongchao Liu, Hailin Sun, Huifu Xu. An approximation scheme for stochastic programs with second order dominance constraints. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 473-490. doi: 10.3934/naco.2016021

[20]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019071

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]