Citation: |
[1] |
F. Abramovich and B. W. Silverman, Wavelet decomposition approaches to statistical inverse problems, Biometrika, 85 (1998), 115-129.doi: 10.1093/biomet/85.1.115. |
[2] |
F. Abramovich, T. Sapatinas and B. W. Silverman, Wavelet thresholding via a Bayesian approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 60 (1998), 725-749.doi: 10.1111/1467-9868.00151. |
[3] |
A. Beskos, G. O. Roberts, A. M. Stuart and J. Voss, MCMC methods for diffusion bridges, Stochastic Dynamics, 8 (2008), 319-350.doi: 10.1142/S0219493708002378. |
[4] |
A. Beskos, G. O. Roberts and A. M. Stuart, Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions, Ann. Appl. Prob., 19 (2009), 863-898.doi: 10.1214/08-AAP563. |
[5] |
R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, in "Acta Numerica," Acta Numer., 7, Cambridge Univ. Press, Cambridge, (1998), 1-49. |
[6] |
A. Chambolle, R. A. DeVore, N. Lee and B. J. Lucier, Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Process., 7 (1998), 319-335.doi: 10.1109/83.661182. |
[7] |
S. L. Cotter, M. Dashti, J. C. Robinson and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics, Inverse Problems, 25 (2009), 115008, 43 pp. |
[8] |
S. L. Cotter, M. Dashti and A. M. Stuart, Approximation of Bayesian inverse problems for PDEs, SIAM J. Num. Anal., 48 (2010), 322-345.doi: 10.1137/090770734. |
[9] |
S. L.Cotter, M. Dashti and A. M.Stuart, Variational data assimilation using targetted random walks, Int. J. Num. Meth. Fluids, To appear, 2011. |
[10] |
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992. |
[11] |
M. Dashti and A. Stuart, Uncertainty quantificationand weak approximation of an elliptic inverse problem, SIAM J. Num.Anal., to appear, 2011, arXiv:1102.0143. |
[12] |
I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF Regional Conference Series in Applied Mathematics, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. |
[13] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.doi: 10.1002/cpa.20042. |
[14] |
D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), 425-455.doi: 10.1093/biomet/81.3.425. |
[15] |
H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375, Kluwer Academic Publishers Group, Dordrecht, 1996.doi: 10.1007/978-94-009-1740-8. |
[16] |
J. N. Franklin, Well-posed stochastic extensions of ill-posed linear problems, J. Math. Anal. Appl., 31 (1970), 682-716.doi: 10.1016/0022-247X(70)90017-X. |
[17] |
T. Helin and M. Lassas, Hierarchical models in statistical inverse problems and the Mumuford-Shah functional, Inverse Problems, 27 (2011), 015008, 32 pp.doi: 10.1088/0266-5611/27/1/015008. |
[18] |
M. Hairer, A. M. Stuart and J. Voss, Analysis of SPDEs arising in path sampling. II. The nonlinear case, Annals of Applied Probability, 17 (2007), 1657-1706.doi: 10.1214/07-AAP441. |
[19] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Applied Mathematical Sciences, 160, Springer-Verlag, New York, 2005. |
[20] |
J.-P. Kahane, "Some Random Series of Functions," Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985. |
[21] |
S. Lasanen, Discretizations of generalized random variables with applications to inverse problems, Dissertation, Ann. Acad. Sci. Fenn. Math. Diss., No. 130, University of Oulu, Oulu, 2002. |
[22] |
S. Lasanen, Measurements and infinite-dimensional statistical inverse theory, PAMM, 7 (2007), 1080101-1080102.doi: 10.1002/pamm.200700068. |
[23] |
M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging, 3 (2009), 87-122.doi: 10.3934/ipi.2009.3.87. |
[24] |
M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalized random variables, Inverse Problems, 5 (1989), 599-612.doi: 10.1088/0266-5611/5/4/011. |
[25] |
A. Mandelbaum, Linear estimators and measurable linear transformations on a Hilbert space, Z. Wahrsch. Verw. Gebiete, 65 (1984), 385-397. |
[26] |
Y. Meyer, "Wavelets and Operators," Translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992. |
[27] |
P. Piiroinen, "Statistical Measruements, Experiments and Applications," Dissertation, Ann. Acad. Sci. Fenn. Math. Diss., No. 143, University of Helsinki, Helsinki, 2005. |
[28] |
Ch. Schwab and A. M. Stuart, Sparse deterministic approximation of Bayesian inverse problems, submitted, arXiv:1103.4522, 2011. |
[29] |
P. D. Spanos and R. Ghanem, Stochastic finite element expansion for random media, J. Eng. Mech., 115 (1989), 1035-1053.doi: 10.1061/(ASCE)0733-9399(1989)115:5(1035). |
[30] |
A. M. Stuart, Inverse problems: A Bayesian approach, Acta Numerica, 2010.doi: 10.1017/S0962492910000061. |
[31] |
H. Triebel, "Theory of Function Spaces," Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. |
[32] |
P. Wojtaszczyk, "A Mathematical Introduction to Wavelets," London Mathematical Society Student Texts, 37, Cambridge University Press, Cambridge, 1997. |