February  2012, 6(1): 25-38. doi: 10.3934/ipi.2012.6.25

On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach

1. 

Faculty of Applied Mathematics and Computer Science, Ivan Franko National University of Lviv, 79000 Lviv, Ukraine

2. 

School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT

Received  January 2011 Revised  December 2011 Published  February 2012

We investigate the problem of determining the stationary temperature field on an inclusion from given Cauchy data on an accessible exterior boundary. On this accessible part the temperature (or the heat flux) is known, and, additionally, on a portion of this exterior boundary the heat flux (or temperature) is also given. We propose a direct boundary integral approach in combination with Tikhonov regularization for the stable determination of the temperature and flux on the inclusion. To determine these quantities on the inclusion, boundary integral equations are derived using Green's functions, and properties of these equations are shown in an $L^2$-setting. An effective way of discretizing these boundary integral equations based on the Nyström method and trigonometric approximations, is outlined. Numerical examples are included, both with exact and noisy data, showing that accurate approximations can be obtained with small computational effort, and the accuracy is increasing with the length of the portion of the boundary where the additionally data is given.
Citation: Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25
References:
[1]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16.   Google Scholar

[2]

F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data,, Inverse Probl. Imaging, 1 (2007), 229.  doi: 10.3934/ipi.2007.1.229.  Google Scholar

[3]

F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection,, Inverse Problems, 26 (2010).   Google Scholar

[4]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009).   Google Scholar

[5]

T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, (French), Ark. Mat., 26 (1939).   Google Scholar

[6]

R. Chapko and B. T. Johansson, An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite domains,, Inverse Probl. Imaging, 2 (2008), 317.   Google Scholar

[7]

R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory,, J. Inverse Ill-Posed Probl., 13 (2005), 27.  doi: 10.1515/1569394053583711.  Google Scholar

[8]

J. Cheng, Y. C. Hon, T. Wei and M. Yamamoto, Numerical computation of a Cauchy problem for Laplace's equation,, ZAMM Z. Angew. Math. Mech., 81 (2001), 665.  doi: 10.1002/1521-4001(200110)81:10<665::AID-ZAMM665>3.0.CO;2-V.  Google Scholar

[9]

X. Escriva, T. N. Baranger and N. H. Tlatli, Leak identification in porous media by solving the Cauchy problem,, C. R. Mecanique, 335 (2007), 401.  doi: 10.1016/j.crme.2007.04.001.  Google Scholar

[10]

Dinh Nho Hào, "Methods for Inverse Heat Conduction Problems,", Habilitationsschrift, 43 (1996).   Google Scholar

[11]

Dinh Nho Hào, B. T. Johansson, D. Lesnic and Pham Minh Hien, A variational method and approximations of a Cauchy problem for elliptic equations,, J. Algorithms Comput. Technol., 4 (2010), 89.  doi: 10.1260/1748-3018.4.1.89.  Google Scholar

[12]

M. Hanke and M. Bruhl, Recent progress in electrical impedance tomography. Special section on imaging,, Inverse Problems, 19 (2003).  doi: 10.1088/0266-5611/19/6/055.  Google Scholar

[13]

P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems,, in, (2001), 119.   Google Scholar

[14]

B. He, Y. Wang and D. Wu, Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model by means of the boundary element method,, IEEE Trans. Biomedical Engn., 46 (1999), 1264.  doi: 10.1109/10.790505.  Google Scholar

[15]

J. Helsing and B. T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques,, Inverse Probl. Sci. Engn., 18 (2010), 381.  doi: 10.1080/17415971003624322.  Google Scholar

[16]

D. Holder, "Electrical Impedance Tomography: Methods, History and Applications,", Institute of Physics, (2005).   Google Scholar

[17]

Y. C. Hon and T. Wei, A meshless scheme for solving inverse problems of Laplace equation,, in, (2003), 291.   Google Scholar

[18]

V. A. Kozlov and V. G. Maz'ya, Iterative procedures for solving ill-posed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144.   Google Scholar

[19]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory,, J. Comp. Appl. Math., 61 (1995), 345.  doi: 10.1016/0377-0427(94)00073-7.  Google Scholar

[20]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem,, Inverse Problems, 21 (2005), 1207.  doi: 10.1088/0266-5611/21/4/002.  Google Scholar

[21]

P. K. Kythe, "Green's Functions and Linear Differential Equations: Theory, Applications, and Computation,", Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, (2011).   Google Scholar

[22]

M. M. Lavrentiev, "Some Improperly Posed Problems of Mathematical Physics,", Springer Verlag, (1967).   Google Scholar

[23]

J. Y. Lee and J. R. Yoon, A numerical method for Cauchy problem using singular value decomposition,, Comm. Korean Math. Soc. {\bf 16} (2001), 16 (2001), 487.   Google Scholar

[24]

L. Marin, Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems,, Engng. Anal. Bound. Elem., 35 (2011), 415.  doi: 10.1016/j.enganabound.2010.07.011.  Google Scholar

[25]

L. Marin and D. Lesnic, The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations,, Comput. & Structures, 83 (2005), 267.  doi: 10.1016/j.compstruc.2004.10.005.  Google Scholar

[26]

L. E. Payne, "Improperly Posed Problems in Partial Differential Equations,", Regional Conference Series in Applied Mathematics, (1975).   Google Scholar

[27]

T. Regińska, Regularization of discrete ill-posed problems,, BIT, 44 (2004), 119.  doi: 10.1023/B:BITN.0000025090.68586.5e.  Google Scholar

[28]

N. Tarchanov, "The Cauchy Problem for Solutions of Elliptic Equations,", Mathematical Topics, 7 (1995).   Google Scholar

[29]

A. Zeb, L. Elliott, D. B. Ingham and D. Lesnic, Solution of the Cauchy problem for Laplace equation,, in, (1997), 297.   Google Scholar

show all references

References:
[1]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations,, Amer. J. Math., 80 (1958), 16.   Google Scholar

[2]

F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data,, Inverse Probl. Imaging, 1 (2007), 229.  doi: 10.3934/ipi.2007.1.229.  Google Scholar

[3]

F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection,, Inverse Problems, 26 (2010).   Google Scholar

[4]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009).   Google Scholar

[5]

T. Carleman, Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes, (French), Ark. Mat., 26 (1939).   Google Scholar

[6]

R. Chapko and B. T. Johansson, An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite domains,, Inverse Probl. Imaging, 2 (2008), 317.   Google Scholar

[7]

R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory,, J. Inverse Ill-Posed Probl., 13 (2005), 27.  doi: 10.1515/1569394053583711.  Google Scholar

[8]

J. Cheng, Y. C. Hon, T. Wei and M. Yamamoto, Numerical computation of a Cauchy problem for Laplace's equation,, ZAMM Z. Angew. Math. Mech., 81 (2001), 665.  doi: 10.1002/1521-4001(200110)81:10<665::AID-ZAMM665>3.0.CO;2-V.  Google Scholar

[9]

X. Escriva, T. N. Baranger and N. H. Tlatli, Leak identification in porous media by solving the Cauchy problem,, C. R. Mecanique, 335 (2007), 401.  doi: 10.1016/j.crme.2007.04.001.  Google Scholar

[10]

Dinh Nho Hào, "Methods for Inverse Heat Conduction Problems,", Habilitationsschrift, 43 (1996).   Google Scholar

[11]

Dinh Nho Hào, B. T. Johansson, D. Lesnic and Pham Minh Hien, A variational method and approximations of a Cauchy problem for elliptic equations,, J. Algorithms Comput. Technol., 4 (2010), 89.  doi: 10.1260/1748-3018.4.1.89.  Google Scholar

[12]

M. Hanke and M. Bruhl, Recent progress in electrical impedance tomography. Special section on imaging,, Inverse Problems, 19 (2003).  doi: 10.1088/0266-5611/19/6/055.  Google Scholar

[13]

P. C. Hansen, The L-curve and its use in the numerical treatment of inverse problems,, in, (2001), 119.   Google Scholar

[14]

B. He, Y. Wang and D. Wu, Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model by means of the boundary element method,, IEEE Trans. Biomedical Engn., 46 (1999), 1264.  doi: 10.1109/10.790505.  Google Scholar

[15]

J. Helsing and B. T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques,, Inverse Probl. Sci. Engn., 18 (2010), 381.  doi: 10.1080/17415971003624322.  Google Scholar

[16]

D. Holder, "Electrical Impedance Tomography: Methods, History and Applications,", Institute of Physics, (2005).   Google Scholar

[17]

Y. C. Hon and T. Wei, A meshless scheme for solving inverse problems of Laplace equation,, in, (2003), 291.   Google Scholar

[18]

V. A. Kozlov and V. G. Maz'ya, Iterative procedures for solving ill-posed boundary value problems that preserve differential equations,, Algebra i Analiz, 1 (1989), 144.   Google Scholar

[19]

R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory,, J. Comp. Appl. Math., 61 (1995), 345.  doi: 10.1016/0377-0427(94)00073-7.  Google Scholar

[20]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem,, Inverse Problems, 21 (2005), 1207.  doi: 10.1088/0266-5611/21/4/002.  Google Scholar

[21]

P. K. Kythe, "Green's Functions and Linear Differential Equations: Theory, Applications, and Computation,", Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, (2011).   Google Scholar

[22]

M. M. Lavrentiev, "Some Improperly Posed Problems of Mathematical Physics,", Springer Verlag, (1967).   Google Scholar

[23]

J. Y. Lee and J. R. Yoon, A numerical method for Cauchy problem using singular value decomposition,, Comm. Korean Math. Soc. {\bf 16} (2001), 16 (2001), 487.   Google Scholar

[24]

L. Marin, Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems,, Engng. Anal. Bound. Elem., 35 (2011), 415.  doi: 10.1016/j.enganabound.2010.07.011.  Google Scholar

[25]

L. Marin and D. Lesnic, The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations,, Comput. & Structures, 83 (2005), 267.  doi: 10.1016/j.compstruc.2004.10.005.  Google Scholar

[26]

L. E. Payne, "Improperly Posed Problems in Partial Differential Equations,", Regional Conference Series in Applied Mathematics, (1975).   Google Scholar

[27]

T. Regińska, Regularization of discrete ill-posed problems,, BIT, 44 (2004), 119.  doi: 10.1023/B:BITN.0000025090.68586.5e.  Google Scholar

[28]

N. Tarchanov, "The Cauchy Problem for Solutions of Elliptic Equations,", Mathematical Topics, 7 (1995).   Google Scholar

[29]

A. Zeb, L. Elliott, D. B. Ingham and D. Lesnic, Solution of the Cauchy problem for Laplace equation,, in, (1997), 297.   Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[5]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[6]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[7]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[8]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[9]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[10]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[15]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[16]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]