May  2012, 6(2): 267-287. doi: 10.3934/ipi.2012.6.267

Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns

1. 

Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu

Received  June 2009 Revised  January 2012 Published  May 2012

In practical statistical inverse problems, one often considers only finite-dimensional unknowns and investigates numerically their posterior probabilities. As many unknowns are function-valued, it is of interest to know whether the estimated probabilities converge when the finite-dimensional approximations of the unknown are refined. In this work, the generalized Bayes formula is shown to be a powerful tool in the convergence studies. With the help of the generalized Bayes formula, the question of convergence of the posterior distributions is returned to the convergence of the finite-dimensional (or any other) approximations of the unknown. The approach allows many prior distributions while the restrictions are mainly for the noise model and the direct theory. Three modes of convergence of posterior distributions are considered -- weak convergence, setwise convergence and convergence in variation. The convergence of conditional mean estimates is also studied.
Citation: Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267
References:
[1]

B. D'Ambrogi, S. Mäenpää and M. Markkanen, Discretization independent retrieval of atmospheric ozone profile,, Geophysica, 35 (1999), 87. Google Scholar

[2]

P. Berti, L. Pratelli and P. Rigo, Almost sure weak convergence of random probability measures,, Stochastics, 78 (2006), 91. doi: 10.1080/17442500600745359. Google Scholar

[3]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968). Google Scholar

[4]

V. I. Bogachev, "Gaussian Measures,", American Mathematical Society, (1998). Google Scholar

[5]

V. I. Bogachev, "Measure Theory. Vol. I, II,", Springer-Verlag, (2007). Google Scholar

[6]

S. L. Cotter, M. Dashti, J. C. Robinson and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics,, Inverse Problems, 25 (2009), 115008. doi: 10.1088/0266-5611/25/11/115008. Google Scholar

[7]

S. L. Cotter, M. Dashti and A. M. Stuart, Approximations of Bayesian inverse problems for PDEs,, SIAM J. Numer. Anal., 48 (2010), 322. doi: 10.1137/090770734. Google Scholar

[8]

I. Crimaldi and L. Pratelli, Convergence results for conditional expectations,, Bernoulli, 11 (2005), 737. doi: 10.3150/bj/1126126767. Google Scholar

[9]

I. Crimaldi and L. Pratelli, Two inequalities for conditional expectations and convergence results for filters,, Statist. Probab. Lett., 74 (2005), 151. doi: 10.1016/j.spl.2005.04.039. Google Scholar

[10]

R. M. Dudley, "Real Analysis and Probability,", Cambridge University Press, (2002). Google Scholar

[11]

B. G. Fitzpatrick, Bayesian analysis in inverse problems,, Inverse Problems, 7 (1991), 675. Google Scholar

[12]

V. P. Fonf, W. B. Johnson, G. Pisier and D. Preiss, Stochastic approximation properties in Banach spaces,, Studia Math., 159 (2003), 103. doi: 10.4064/sm159-1-5. Google Scholar

[13]

E. Goggin, Convergence in distribution of conditional expectations,, Ann. Probab., 22 (1994), 1097. doi: 10.1214/aop/1176988743. Google Scholar

[14]

P. Gänssler and J. Pfanzagl, Convergence of conditional expectations,, Ann. Math. Statist., 42 (1971), 315. doi: 10.1214/aoms/1177693514. Google Scholar

[15]

J. M. Hammersley, Monte Carlo methods for solving multivariable problems,, Ann. New York Acad. Sci., 86 (1960), 844. doi: 10.1111/j.1749-6632.1960.tb42846.x. Google Scholar

[16]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems,, Inverse Probl. Imaging, 3 (2009), 567. Google Scholar

[17]

T. Helin and M. Lassas, Hierarchical models in statistical inverse problems and the Mumford-Shah functional,, Inverse Problems, 27 (2011), 015008. doi: 10.1088/0266-5611/27/1/015008. Google Scholar

[18]

W. Herer, Stochastic bases in Fréchet spaces,, Demonstratio Math., 14 (1981), 719. Google Scholar

[19]

G. Kallianpur, "Stochastic Filtering Theory,", Springer-Verlag, (1980). Google Scholar

[20]

G. Kallianpur and C. Striebel, Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors,, Ann. Math. Statist., 39 (1968), 785. Google Scholar

[21]

K. Krikkeberg, Convergence of conditional expectation operators,, Theory Probab. Appl., 9 (1964), 538. Google Scholar

[22]

J. Kuelbs, Some results of probability measures on linear topological vector spaces with an application to Strassen's log log law,, J. Funct. Anal., 14 (1973), 28. doi: 10.1016/0022-1236(73)90028-1. Google Scholar

[23]

D. Landers and L. Rogge, A generalized Martingale theorem,, Z. Wahrsch. Verw. Gebiete, 23 (1972), 289. doi: 10.1007/BF00532514. Google Scholar

[24]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2002). Google Scholar

[25]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions,, Inverse Probl. and Imaging, 6 (2012), 215. Google Scholar

[26]

S. Lasanen and L. Roininen, Statistical inversion with Green's priors,, in, (2005), 11. Google Scholar

[27]

M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors,, Inverse Probl. Imaging, 3 (2009), 87. Google Scholar

[28]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?,, Inverse Problems, 20 (2004), 1537. doi: 10.1088/0266-5611/20/5/013. Google Scholar

[29]

H. Niederreiter, "Random Number Generation and Quasi-Monte Carlo Methods,", SIAM, (1992). Google Scholar

[30]

B. Oeksendal, "Stochastic Differential Equations. An Introduction with Applications,", Springer-Verlag, (2003). Google Scholar

[31]

Y. Okazaki, Stochastic basis in Fréchet space,, Math. Ann., 274 (1986), 379. doi: 10.1007/BF01457222. Google Scholar

[32]

P. Piiroinen, "Statistical Measurements, Experiments and Applications," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2005). Google Scholar

[33]

H. Sato, An ergodic measure on a locally convex topological vector space,, J. Funct. Anal., 43 (1981), 149. doi: 10.1016/0022-1236(81)90026-4. Google Scholar

[34]

A. M. Stuart, Inverse problems: A Bayesian perspective,, Acta Numerica, 19 (2010), 451. doi: 10.1017/S0962492910000061. Google Scholar

[35]

N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, "Probability Distributions on Banach Spaces,", Reidel Publishing Co., (1987). Google Scholar

show all references

References:
[1]

B. D'Ambrogi, S. Mäenpää and M. Markkanen, Discretization independent retrieval of atmospheric ozone profile,, Geophysica, 35 (1999), 87. Google Scholar

[2]

P. Berti, L. Pratelli and P. Rigo, Almost sure weak convergence of random probability measures,, Stochastics, 78 (2006), 91. doi: 10.1080/17442500600745359. Google Scholar

[3]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968). Google Scholar

[4]

V. I. Bogachev, "Gaussian Measures,", American Mathematical Society, (1998). Google Scholar

[5]

V. I. Bogachev, "Measure Theory. Vol. I, II,", Springer-Verlag, (2007). Google Scholar

[6]

S. L. Cotter, M. Dashti, J. C. Robinson and A. M. Stuart, Bayesian inverse problems for functions and applications to fluid mechanics,, Inverse Problems, 25 (2009), 115008. doi: 10.1088/0266-5611/25/11/115008. Google Scholar

[7]

S. L. Cotter, M. Dashti and A. M. Stuart, Approximations of Bayesian inverse problems for PDEs,, SIAM J. Numer. Anal., 48 (2010), 322. doi: 10.1137/090770734. Google Scholar

[8]

I. Crimaldi and L. Pratelli, Convergence results for conditional expectations,, Bernoulli, 11 (2005), 737. doi: 10.3150/bj/1126126767. Google Scholar

[9]

I. Crimaldi and L. Pratelli, Two inequalities for conditional expectations and convergence results for filters,, Statist. Probab. Lett., 74 (2005), 151. doi: 10.1016/j.spl.2005.04.039. Google Scholar

[10]

R. M. Dudley, "Real Analysis and Probability,", Cambridge University Press, (2002). Google Scholar

[11]

B. G. Fitzpatrick, Bayesian analysis in inverse problems,, Inverse Problems, 7 (1991), 675. Google Scholar

[12]

V. P. Fonf, W. B. Johnson, G. Pisier and D. Preiss, Stochastic approximation properties in Banach spaces,, Studia Math., 159 (2003), 103. doi: 10.4064/sm159-1-5. Google Scholar

[13]

E. Goggin, Convergence in distribution of conditional expectations,, Ann. Probab., 22 (1994), 1097. doi: 10.1214/aop/1176988743. Google Scholar

[14]

P. Gänssler and J. Pfanzagl, Convergence of conditional expectations,, Ann. Math. Statist., 42 (1971), 315. doi: 10.1214/aoms/1177693514. Google Scholar

[15]

J. M. Hammersley, Monte Carlo methods for solving multivariable problems,, Ann. New York Acad. Sci., 86 (1960), 844. doi: 10.1111/j.1749-6632.1960.tb42846.x. Google Scholar

[16]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems,, Inverse Probl. Imaging, 3 (2009), 567. Google Scholar

[17]

T. Helin and M. Lassas, Hierarchical models in statistical inverse problems and the Mumford-Shah functional,, Inverse Problems, 27 (2011), 015008. doi: 10.1088/0266-5611/27/1/015008. Google Scholar

[18]

W. Herer, Stochastic bases in Fréchet spaces,, Demonstratio Math., 14 (1981), 719. Google Scholar

[19]

G. Kallianpur, "Stochastic Filtering Theory,", Springer-Verlag, (1980). Google Scholar

[20]

G. Kallianpur and C. Striebel, Estimation of stochastic systems: Arbitrary system process with additive white noise observation errors,, Ann. Math. Statist., 39 (1968), 785. Google Scholar

[21]

K. Krikkeberg, Convergence of conditional expectation operators,, Theory Probab. Appl., 9 (1964), 538. Google Scholar

[22]

J. Kuelbs, Some results of probability measures on linear topological vector spaces with an application to Strassen's log log law,, J. Funct. Anal., 14 (1973), 28. doi: 10.1016/0022-1236(73)90028-1. Google Scholar

[23]

D. Landers and L. Rogge, A generalized Martingale theorem,, Z. Wahrsch. Verw. Gebiete, 23 (1972), 289. doi: 10.1007/BF00532514. Google Scholar

[24]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2002). Google Scholar

[25]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions,, Inverse Probl. and Imaging, 6 (2012), 215. Google Scholar

[26]

S. Lasanen and L. Roininen, Statistical inversion with Green's priors,, in, (2005), 11. Google Scholar

[27]

M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors,, Inverse Probl. Imaging, 3 (2009), 87. Google Scholar

[28]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?,, Inverse Problems, 20 (2004), 1537. doi: 10.1088/0266-5611/20/5/013. Google Scholar

[29]

H. Niederreiter, "Random Number Generation and Quasi-Monte Carlo Methods,", SIAM, (1992). Google Scholar

[30]

B. Oeksendal, "Stochastic Differential Equations. An Introduction with Applications,", Springer-Verlag, (2003). Google Scholar

[31]

Y. Okazaki, Stochastic basis in Fréchet space,, Math. Ann., 274 (1986), 379. doi: 10.1007/BF01457222. Google Scholar

[32]

P. Piiroinen, "Statistical Measurements, Experiments and Applications," Dissertation,, Ann. Acad. Sci. Fenn. Math. Diss., (2005). Google Scholar

[33]

H. Sato, An ergodic measure on a locally convex topological vector space,, J. Funct. Anal., 43 (1981), 149. doi: 10.1016/0022-1236(81)90026-4. Google Scholar

[34]

A. M. Stuart, Inverse problems: A Bayesian perspective,, Acta Numerica, 19 (2010), 451. doi: 10.1017/S0962492910000061. Google Scholar

[35]

N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, "Probability Distributions on Banach Spaces,", Reidel Publishing Co., (1987). Google Scholar

[1]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[2]

Azmy S. Ackleh, Ben G. Fitzpatrick, Horst R. Thieme. Rate distributions and survival of the fittest: a formulation on the space of measures. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 917-928. doi: 10.3934/dcdsb.2005.5.917

[3]

Eugen Mihailescu. Equilibrium measures, prehistories distributions and fractal dimensions for endomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2485-2502. doi: 10.3934/dcds.2012.32.2485

[4]

Kui Lin, Shuai Lu, Peter Mathé. Oracle-type posterior contraction rates in Bayesian inverse problems. Inverse Problems & Imaging, 2015, 9 (3) : 895-915. doi: 10.3934/ipi.2015.9.895

[5]

Todd Young. Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 359-378. doi: 10.3934/dcds.2003.9.359

[6]

Miguel-C. Muñoz-Lecanda. On some aspects of the geometry of non integrable distributions and applications. Journal of Geometric Mechanics, 2018, 10 (4) : 445-465. doi: 10.3934/jgm.2018017

[7]

Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems & Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697

[8]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[9]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[10]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[11]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[12]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[13]

Jean-Luc Akian, Radjesvarane Alexandre, Salma Bougacha. A Gaussian beam approach for computing Wigner measures in convex domains. Kinetic & Related Models, 2011, 4 (3) : 589-631. doi: 10.3934/krm.2011.4.589

[14]

Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014

[15]

Axel Heim, Vladimir Sidorenko, Uli Sorger. Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2008, 2 (4) : 373-391. doi: 10.3934/amc.2008.2.373

[16]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[17]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[18]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[19]

Johnathan M. Bardsley. Gaussian Markov random field priors for inverse problems. Inverse Problems & Imaging, 2013, 7 (2) : 397-416. doi: 10.3934/ipi.2013.7.397

[20]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]