May  2012, 6(2): 289-313. doi: 10.3934/ipi.2012.6.289

Inverse diffusion problems with redundant internal information

1. 

Department of Applied Physics and Applied Mathematics, Columbia University, New York NY, 10027

Received  June 2011 Published  May 2012

This paper concerns the reconstruction of a scalar diffusion coefficient $\sigma(x)$ from redundant functionals of the form $H_i(x)=\sigma^{2\alpha}(x)|\nabla u_i|^2(x)$ where $\alpha\in\mathbb{R}$ and $u_i$ is a solution of the elliptic problem $\nabla\cdot \sigma \nabla u_i=0$ for $1\leq i\leq I$. The case $\alpha=\frac12$ is used to model measurements obtained from modulating a domain of interest by ultrasound and finds applications in ultrasound modulated electrical impedance tomography (UMEIT), ultrasound modulated optical tomography (UMOT) as well as impedance acoustic computerized tomography (ImpACT). The case $\alpha=1$ finds applications in Magnetic Resonance Electrical Impedance Tomography (MREIT).
    We present two explicit reconstruction procedures of $\sigma$ for appropriate choices of $I$ and of traces of $u_i$ at the boundary of a domain of interest. The first procedure involves the solution of an over-determined system of ordinary differential equations and generalizes to the multi-dimensional case and to (almost) arbitrary values of $\alpha$ the results obtained in two and three dimensions in [10] and [5], respectively, in the case $\alpha=\frac12$. The second procedure consists of solving a system of linear elliptic equations, which we can prove admits a unique solution in specific situations.
Citation: François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems & Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289
References:
[1]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557.  doi: 10.1137/070686408.  Google Scholar

[2]

G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings,, Arch. Rat. Mech. Anal., 158 (2001), 155.  doi: 10.1007/PL00004242.  Google Scholar

[3]

G. Bal, Hybrid inverse problems and internal functionals (review paper),, in, (2012).   Google Scholar

[4]

_____, Cauchy problem and Ultrasound modulated EIT,, submitted., ().   Google Scholar

[5]

G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities,, Inverse Probl. Imaging, (2012).   Google Scholar

[6]

G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055007.  Google Scholar

[7]

G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085010.  Google Scholar

[8]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.   Google Scholar

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'', Third edition, (1999).   Google Scholar

[10]

Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements,, SIAM Journal on Imaging Sciences, 2 (2009), 1003.   Google Scholar

[11]

L. C. Evans, "Partial Differential Equations,'', Graduate Studies in Mathematics, (1998).   Google Scholar

[12]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Applied Math., 69 (2009), 565.  doi: 10.1137/080715123.  Google Scholar

[13]

S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography,, SIAM J. Math. Anal., 34 (2002), 511.  doi: 10.1137/S0036141001391354.  Google Scholar

[14]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography,, Inverse Problems, 27 (2011).   Google Scholar

[15]

J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'', Graduate Texts in Mathematics, (1997).   Google Scholar

[16]

F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'', Ph.D. thesis, (2012).   Google Scholar

[17]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data,, Inverse Problems, 23 (2007), 2551.  doi: 10.1088/0266-5611/23/6/017.  Google Scholar

[18]

_____, Recovering the conductivity from a single measurement of interior data,, Inverse Problems, 25 (2009).   Google Scholar

[19]

_____, Current density impedance imaging,, Contemporary Mathematics, (2012).   Google Scholar

[20]

O. Scherzer, "Handbook of Mathematical Methods in Imaging,'', Springer Verlag, (2011).   Google Scholar

[21]

M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'', Second edition, (1990).   Google Scholar

[22]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[23]

M. Taylor, "Partial Differential Equations I, Basic Theory,'', Springer, (1996).   Google Scholar

show all references

References:
[1]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557.  doi: 10.1137/070686408.  Google Scholar

[2]

G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings,, Arch. Rat. Mech. Anal., 158 (2001), 155.  doi: 10.1007/PL00004242.  Google Scholar

[3]

G. Bal, Hybrid inverse problems and internal functionals (review paper),, in, (2012).   Google Scholar

[4]

_____, Cauchy problem and Ultrasound modulated EIT,, submitted., ().   Google Scholar

[5]

G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities,, Inverse Probl. Imaging, (2012).   Google Scholar

[6]

G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055007.  Google Scholar

[7]

G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085010.  Google Scholar

[8]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.   Google Scholar

[9]

C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'', Third edition, (1999).   Google Scholar

[10]

Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements,, SIAM Journal on Imaging Sciences, 2 (2009), 1003.   Google Scholar

[11]

L. C. Evans, "Partial Differential Equations,'', Graduate Studies in Mathematics, (1998).   Google Scholar

[12]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Applied Math., 69 (2009), 565.  doi: 10.1137/080715123.  Google Scholar

[13]

S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography,, SIAM J. Math. Anal., 34 (2002), 511.  doi: 10.1137/S0036141001391354.  Google Scholar

[14]

P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography,, Inverse Problems, 27 (2011).   Google Scholar

[15]

J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'', Graduate Texts in Mathematics, (1997).   Google Scholar

[16]

F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'', Ph.D. thesis, (2012).   Google Scholar

[17]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data,, Inverse Problems, 23 (2007), 2551.  doi: 10.1088/0266-5611/23/6/017.  Google Scholar

[18]

_____, Recovering the conductivity from a single measurement of interior data,, Inverse Problems, 25 (2009).   Google Scholar

[19]

_____, Current density impedance imaging,, Contemporary Mathematics, (2012).   Google Scholar

[20]

O. Scherzer, "Handbook of Mathematical Methods in Imaging,'', Springer Verlag, (2011).   Google Scholar

[21]

M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'', Second edition, (1990).   Google Scholar

[22]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[23]

M. Taylor, "Partial Differential Equations I, Basic Theory,'', Springer, (1996).   Google Scholar

[1]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]