Advanced Search
Article Contents
Article Contents

Inverse diffusion problems with redundant internal information

Abstract Related Papers Cited by
  • This paper concerns the reconstruction of a scalar diffusion coefficient $\sigma(x)$ from redundant functionals of the form $H_i(x)=\sigma^{2\alpha}(x)|\nabla u_i|^2(x)$ where $\alpha\in\mathbb{R}$ and $u_i$ is a solution of the elliptic problem $\nabla\cdot \sigma \nabla u_i=0$ for $1\leq i\leq I$. The case $\alpha=\frac12$ is used to model measurements obtained from modulating a domain of interest by ultrasound and finds applications in ultrasound modulated electrical impedance tomography (UMEIT), ultrasound modulated optical tomography (UMOT) as well as impedance acoustic computerized tomography (ImpACT). The case $\alpha=1$ finds applications in Magnetic Resonance Electrical Impedance Tomography (MREIT).
        We present two explicit reconstruction procedures of $\sigma$ for appropriate choices of $I$ and of traces of $u_i$ at the boundary of a domain of interest. The first procedure involves the solution of an over-determined system of ordinary differential equations and generalizes to the multi-dimensional case and to (almost) arbitrary values of $\alpha$ the results obtained in two and three dimensions in [10] and [5], respectively, in the case $\alpha=\frac12$. The second procedure consists of solving a system of linear elliptic equations, which we can prove admits a unique solution in specific situations.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 35J45, 53B21.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573.doi: 10.1137/070686408.


    G. Alessandrini and V. Nesi, Univalent $e^\sigma$-harmonic mappings, Arch. Rat. Mech. Anal., 158 (2001), 155-171.doi: 10.1007/PL00004242.


    G. Bal, Hybrid inverse problems and internal functionals (review paper), in "Inside Out'' (ed. Gunther Uhlmann), Cambridge University Press, 2012.


    _____Cauchy problem and Ultrasound modulated EIT, submitted.


    G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Probl. Imaging, in press, 2012.


    G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography, Inverse Problems, 27 (2011).doi: 10.1088/0266-5611/27/5/055007.


    G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics, Inverse Problems, 26 (2010), 085010.doi: 10.1088/0266-5611/26/8/085010.


    A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matematica, Rio de Janeiro, (1980), 65-73.


    C. Carathéodory, "Calculus of Variations and Partial Differential Equations of the First Order,'' Third edition, AMS, Chelsea, 1999.


    Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements, SIAM Journal on Imaging Sciences, 2 (2009), 1003-1030.


    L. C. Evans, "Partial Differential Equations,'' Graduate Studies in Mathematics, Vol. 19, AMS, 1998.


    B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Applied Math., 69 (2009), 565-576.doi: 10.1137/080715123.


    S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM J. Math. Anal., 34 (2002), 511-526.doi: 10.1137/S0036141001391354.


    P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013.


    J. M. Lee, "Riemannian Manifolds. An Introduction to Curvature,'' Graduate Texts in Mathematics, Vol. 176, Springer, 1997.


    F. Monard, "Taming Unstable Inverse Problems. Mathematical Routes Toward High-Resolution Medical Imaging Modalities,'' Ph.D. thesis, Columbia University, New York, 2012.


    A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563.doi: 10.1088/0266-5611/23/6/017.


    _____, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014.


    _____, Current density impedance imaging, Contemporary Mathematics, American Mathematical Society, in press, 2012.


    O. Scherzer, "Handbook of Mathematical Methods in Imaging,'' Springer Verlag, New York, 2011.


    M. Spivak, "A Comprehensive Introduction to Differential Geometry, Vol. 2,'' Second edition, Publish or perish, 1990.


    J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.doi: 10.2307/1971291.


    M. Taylor, "Partial Differential Equations I, Basic Theory,'' Springer, New York, 1996.

  • 加载中

Article Metrics

HTML views() PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint