Advanced Search
Article Contents
Article Contents

Reconstruction of the singularities of a potential from backscattering data in 2D and 3D

Abstract Related Papers Cited by
  • We prove that the singularities of a potential in two and three dimensional Schrödinger equation are the same as those of the Born approximation (Diffraction Tomography), obtained from backscattering inverse data, with an accuracy of $1/2^-$ derivative in the scale of $L^2$-based Sobolev spaces. This improves previous results, see [30] and [20], removing several constrains on the a priori regularity of the potential. The improvement is based on the study of the smoothing properties of the quartic term in the Neumann-Born expansion of the scattering amplitude in 3D, together with a Leibniz formula for multiple scattering valid in any dimension.
    Mathematics Subject Classification: Primary: 34A55, 35P25, 81U40.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa (4), II (1975), 151-218.


    J. A. Barceló, D. Faraco, A. Ruiz and A. Vargas, Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers, Math. Ann., 346 (2010), 505-544.doi: 10.1007/s00208-009-0398-5.


    G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a casual generalized Radon transform, J. Math. Phys., 26 (1985), 99-108.doi: 10.1063/1.526755.


    I. Beltita and A. Mellin, Analysis of the quadratic term in the backscattering transform, Math. Scand., 105 (2009), 218-234.


    I. Beltita and A. Mellin, Local smoothing for the backscattering transform, Comm. Partial Differential Equations, 34 (2009), 233-256.doi: 10.1080/03605300902812384.


    D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,'' John Wiley & Sons, New York, 1983.


    G. Eskin and J. Ralston, The inverse backscattering problem in 3 dimension, Comm. Math. Phys., 124 (1989), 169-215.doi: 10.1007/BF01219194.


    G. Eskin and J. Ralston, Inverse backscattering in two dimensions, Comm. Math. Phys., 138 (1991), 451-486.doi: 10.1007/BF02102037.


    G. Eskin and J. Ralston, Inverse backscattering, J. Anal. Math., 58 (1992), 177-190.doi: 10.1007/BF02790363.


    P. Grisvard, "Elliptic Problems in Nonsmooth Domains,'' Pitman Boston, 1985.


    A. Greenleaf and G. Uhlmann, Recovery of singularities of a potential from singularities of the scattering data, Comm. Math. Phys., 157 (1993), 549-572.doi: 10.1007/BF02096882.


    P. Hajlasz, Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996), 403-415.


    C. E. Kenig, A. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficients differential operators, Duke Math. J., 55 (1987), 329-347.doi: 10.1215/S0012-7094-87-05518-9.


    R. Lagergren, "Backscattering in Three Dimensions,'' Ph.D thesis, Lund University, 2001.


    R. Lagergren, The back-scattering problem in three dimensions, J. Pseudo-Differ. Oper. Appl., 2 (2011), no. 1, 1-64.doi: 10.1007/s11868-010-0021-2.


    A. Melin, Some transforms in potential scattering in odd dimension, in "Inverse Problems and Spectral Theory," Contemp. Math., 348, Amer. Math. Soc., Providence, RI, (2004), 103-134.


    R. Melrose and G. Uhlmann, Generalized backscattering and the Lax-Phillips transform, Serdica Math. J., 34 (2008), 355-372.


    A. Nachman, Inverse scattering at fixed energy, in "Proceedings of the 10th International Congress on Mathematical Physics," Leipzig, Springer Verlag, (1992), 434-441.


    R. G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta\Psi+(v(x)-Eu(x))\Psi=0$, Funct. Anal. Appl., 22 (1988), 263-272.doi: 10.1007/BF01077418.


    P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions, Comm. Partial Differential Equations, 26 (2001), 697-715.doi: 10.1081/PDE-100001768.


    L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential, SIAM J. Math. Anal., 29 (1998), 697-711.doi: 10.1137/S0036141096305796.


    L. Päivärinta, V. Serov and E. Somersalo, Reconstruction of singularities of a scattering potential in two dimensions, Adv. in Appl. Math., 15 (1994), 97-113.doi: 10.1006/aama.1994.1003.


    L. Päivärinta and E. Somersalo, Inversion of discontinuities for the Schrödinger equation in three dimensions, SIAM J. Math. Anal., 22 (1991), 480-499.doi: 10.1137/0522031.


    R. T. Prosser, Formal solutions of inverse scattering problems, J. Math. Phys., 23 (1982), 2127-2130.doi: 10.1063/1.525267.


    A. G. Ramm, Recovery of a potential from fixed-energy scattering data, Inverse Problems, 4 (1988), 877-886.


    J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D, Inverse Problems, 23 (2007), 625-643.doi: 10.1088/0266-5611/23/2/010.


    J. M. Reyes, "Problema Inverso de Scattering para la Ecuación de Schrödinger: Reconstrucción Parcial del Potencial a Partir de Datos de Retrodispersión en 2D y 3D,'' (Spanish), Ph.D thesis, Universidad Autónoma de Madrid, 2007. Available from: http://www.uam.es/gruposinv/inversos/publicaciones/index.html.


    A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data, Comm. Partial Differential Equations, 26 (2001), 1721-1738.


    A. Ruiz, "Harmonic Analysis and Inverse Problems,'' Notes of the 4th Summer School in Inverse Problems, Oulu, Finland, 2002. Available from: http://www.uam.es/gruposinv/inversos/publicaciones/index.html.


    A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data, Comm. Partial Differential Equations, 30 (2005), 67-96.doi: 10.1081/PDE-200044450.


    P. Stefanov, Generic uniqueness for two inverse problems in potential scattering, Comm. Partial Differential Equations, 17 (1992), 55-68.doi: 10.1080/03605309208820834.


    Z. Sun and G. Uhlmann, Generic uniqueness for an inverse boundary value problem, Duke Math. J., 62 (1991), 131-155.doi: 10.1215/S0012-7094-91-06206-X.


    G. Uhlmann, A time-dependent approach to the inverse backscattering problem, Special issue to celebrate Pierre Sabatier's 65th birthday (Montpellier, 2000), Inverse Problems, 17 (2001), 703-716.


    G. N. Watson, "The Theory of Bessel Functions,'' Cambridge University Press, New York, 1948.

  • 加载中

Article Metrics

HTML views() PDF downloads(51) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint