August  2012, 6(3): 373-398. doi: 10.3934/ipi.2012.6.373

Transmission eigenvalues for inhomogeneous media containing obstacles

1. 

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553, United States

2. 

CERFACS, 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France

3. 

INRIA Saclay Ile de France/CMAP Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France

Received  November 2011 Revised  June 2012 Published  September 2012

We consider the interior transmission problem corresponding to the inverse scattering by an inhomogeneous (possibly anisotropic) media in which an impenetrable obstacle with Dirichlet boundary conditions is embedded. Our main focus is to understand the associated eigenvalue problem, more specifically to prove that the transmission eigenvalues form a discrete set and show that they exist. The presence of Dirichlet obstacle brings new difficulties to already complicated situation dealing with a non-selfadjoint eigenvalue problem. In this paper, we employ a variety of variational techniques under various assumptions on the index of refraction as well as the size of the Dirichlet obstacle.
Citation: Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373
References:
[1]

A. S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of t-coercivity to study the interior transmission eigenvalue problem,, C. R. Acad. Sci., 340 (2011).   Google Scholar

[2]

A. S. Bonnet-BenDhia, P. Ciarlet and C. Maria Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients,, J. Comput. Appl. Math, 234 (2010), 1912.  doi: 10.1016/j.cam.2009.08.041.  Google Scholar

[3]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory,", Interaction of Mechanics and Mathematics. Springer-Verlag, (2006).   Google Scholar

[4]

F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem,, SIAM J. Math. Anal., 42 (2010), 2912.  doi: 10.1137/100793542.  Google Scholar

[5]

F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media,, J. Integral Equations and Applications, 21 (2009), 203.  doi: 10.1216/JIE-2009-21-2-203.  Google Scholar

[6]

F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities,, SIAM J. Math. Anal., 42 (2010), 145.  doi: 10.1137/090754637.  Google Scholar

[7]

F. Cakoni, D. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data,, C. R. Acad. Sci. Paris, 348 (2010), 379.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[8]

F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data,, Inverse Problems, 23 (2007), 507.  doi: 10.1088/0266-5611/23/2/004.  Google Scholar

[9]

F. Cakoni and D. Gintides, New results on transmission eigenvalues,, Inverse Problems and Imaging, 4 (2010), 39.  doi: 10.3934/ipi.2010.4.39.  Google Scholar

[10]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues,, SIAM J. Math. Anal., 42 (2010), 237.  doi: 10.1137/090769338.  Google Scholar

[11]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium,, Applicable Analysis, 88 (2008), 475.  doi: 10.1080/00036810802713966.  Google Scholar

[12]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem,, Int. Jour. Comp. Sci. Math, 3 (2010), 142.   Google Scholar

[13]

D. Colton and R. Kress, "Inverse Acoustic and Eletromagnetic Scattering Theory,", Springer, (1998).   Google Scholar

[14]

D. Colton, L. Päivärinta and J.Sylvester, The interior transmission problem,, Inverse Problems and Imaging, 1 (2007), 13.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[15]

A. Cossonniere and H. Haddar, The electromagnetic interior transmission problem for regions with cavities,, SIAM J. Math. Anal., 43 (2011), 1698.  doi: 10.1137/100813890.  Google Scholar

[16]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients,, SIAM J. Math. Analysis, 42 (2010), 619.  doi: 10.1137/100793748.  Google Scholar

[17]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients,, Math Research Letters, 18 (2011), 279.   Google Scholar

[18]

A. Kirsch, On the existence of transmission eigenvalues,, Inverse Problems and Imaging, 3 (2009), 155.   Google Scholar

[19]

A. Kirsch and N. Grinberg, The factorization method for inverse problems,, in, 36 (2008).   Google Scholar

[20]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities,, Math. Meth. Appl. Sci., 21 (1998), 2965.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.  Google Scholar

[21]

L. Päivärinta and J. Sylvester, Transmission eigenvalues,, SIAM J. Math. Anal., 40 (2008), 738.  doi: 10.1137/070697525.  Google Scholar

[22]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators,, SIAM J. Math. Anal., 44 (2012), 341.  doi: 10.1137/110836420.  Google Scholar

show all references

References:
[1]

A. S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of t-coercivity to study the interior transmission eigenvalue problem,, C. R. Acad. Sci., 340 (2011).   Google Scholar

[2]

A. S. Bonnet-BenDhia, P. Ciarlet and C. Maria Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients,, J. Comput. Appl. Math, 234 (2010), 1912.  doi: 10.1016/j.cam.2009.08.041.  Google Scholar

[3]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory,", Interaction of Mechanics and Mathematics. Springer-Verlag, (2006).   Google Scholar

[4]

F. Cakoni, D. Colton and D. Gintides, The interior transmission eigenvalue problem,, SIAM J. Math. Anal., 42 (2010), 2912.  doi: 10.1137/100793542.  Google Scholar

[5]

F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media,, J. Integral Equations and Applications, 21 (2009), 203.  doi: 10.1216/JIE-2009-21-2-203.  Google Scholar

[6]

F. Cakoni, D. Colton and H. Haddar, The interior transmission problem for regions with cavities,, SIAM J. Math. Anal., 42 (2010), 145.  doi: 10.1137/090754637.  Google Scholar

[7]

F. Cakoni, D. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data,, C. R. Acad. Sci. Paris, 348 (2010), 379.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[8]

F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data,, Inverse Problems, 23 (2007), 507.  doi: 10.1088/0266-5611/23/2/004.  Google Scholar

[9]

F. Cakoni and D. Gintides, New results on transmission eigenvalues,, Inverse Problems and Imaging, 4 (2010), 39.  doi: 10.3934/ipi.2010.4.39.  Google Scholar

[10]

F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues,, SIAM J. Math. Anal., 42 (2010), 237.  doi: 10.1137/090769338.  Google Scholar

[11]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium,, Applicable Analysis, 88 (2008), 475.  doi: 10.1080/00036810802713966.  Google Scholar

[12]

F. Cakoni and A. Kirsch, On the interior transmission eigenvalue problem,, Int. Jour. Comp. Sci. Math, 3 (2010), 142.   Google Scholar

[13]

D. Colton and R. Kress, "Inverse Acoustic and Eletromagnetic Scattering Theory,", Springer, (1998).   Google Scholar

[14]

D. Colton, L. Päivärinta and J.Sylvester, The interior transmission problem,, Inverse Problems and Imaging, 1 (2007), 13.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[15]

A. Cossonniere and H. Haddar, The electromagnetic interior transmission problem for regions with cavities,, SIAM J. Math. Anal., 43 (2011), 1698.  doi: 10.1137/100813890.  Google Scholar

[16]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients,, SIAM J. Math. Analysis, 42 (2010), 619.  doi: 10.1137/100793748.  Google Scholar

[17]

M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for operators with constant coefficients,, Math Research Letters, 18 (2011), 279.   Google Scholar

[18]

A. Kirsch, On the existence of transmission eigenvalues,, Inverse Problems and Imaging, 3 (2009), 155.   Google Scholar

[19]

A. Kirsch and N. Grinberg, The factorization method for inverse problems,, in, 36 (2008).   Google Scholar

[20]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities,, Math. Meth. Appl. Sci., 21 (1998), 2965.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.  Google Scholar

[21]

L. Päivärinta and J. Sylvester, Transmission eigenvalues,, SIAM J. Math. Anal., 40 (2008), 738.  doi: 10.1137/070697525.  Google Scholar

[22]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators,, SIAM J. Math. Anal., 44 (2012), 341.  doi: 10.1137/110836420.  Google Scholar

[1]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[2]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems & Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[3]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[4]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[5]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[6]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[7]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[8]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[9]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[10]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[11]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[12]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[13]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[14]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[15]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[16]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[17]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[18]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

[19]

Yalin Zhang, Guoliang Shi. Continuous dependence of the transmission eigenvalues in one dimension. Inverse Problems & Imaging, 2015, 9 (1) : 273-287. doi: 10.3934/ipi.2015.9.273

[20]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (9)

[Back to Top]