-
Previous Article
On the inverse doping profile problem
- IPI Home
- This Issue
-
Next Article
Probing for inclusions in heat conductive bodies
Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint
1. | Shenzhen Key Lab of Visual Computing and Visual Analytics, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, 518055, China |
2. | Department of Mathematics and Earth and Ocean Science, The University of British Columbia, Vancouver, BC, V6T 1Z2, Canada |
3. | Business Analytics and Mathematical Sciences, IBM T J Watson Research Center, Yorktown Heights, NY, 10598, United States |
References:
[1] |
IEEE Trans. Auto. Cont., 19 (1974), 716-723.
doi: 10.1109/TAC.1974.1100705. |
[2] |
IEEE Trans. Auto. Cont., 56 (2011), 2898-2911.
doi: 10.1109/TAC.2011.2141430. |
[3] |
SIAM J. Scient. Comput., 28 (2006), 339-358.
doi: 10.1137/040617261. |
[4] |
M2AN, Math. Model. Numer. Anal., 43 (2009), 689-708. |
[5] |
Proc. IEEE Intl. Conf. on Acous., Spee., and Sig. Proc., 2000. Google Scholar |
[6] |
SIAM Review, 51 (2009), 34-81.
doi: 10.1137/060657704. |
[7] |
E. J. Candès and D. L. Donoho, "Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges,", 1999., (). Google Scholar |
[8] |
IEEE In Sig. Proc. Magaz., 25 (2008), 21-30.
doi: 10.1109/MSP.2007.914731. |
[9] |
SIAM, 2005. |
[10] |
SIAM J. Imaging Sci., 3 (2010), 765-790.
doi: 10.1137/080740167. |
[11] |
SIAM Review, 41 (1999), 85-101.
doi: 10.1137/S0036144598333613. |
[12] |
Optim. Meth. and Soft., 23 (2008), 501-520.
doi: 10.1080/10556780802102693. |
[13] |
Numer. Math., 100 (2005), 21-47.
doi: 10.1007/s00211-004-0569-y. |
[14] |
SIAM J. Matrix Anal. Appl., 30 (2008), 56-66.
doi: 10.1137/060670985. |
[15] |
IEEE Trans. on Image Proc., 14 (2005), 2091-2106.
doi: 10.1109/TIP.2005.859376. |
[16] |
IEEE Trans. Image Proc., 20 (2011), 1838-1857.
doi: 10.1109/TIP.2011.2108306. |
[17] |
Inver. Problems, 23 (2007), 947-968.
doi: 10.1088/0266-5611/23/3/007. |
[18] |
Digit. Sig. Proc., 17 (2007), 32-49.
doi: 10.1016/j.dsp.2006.02.002. |
[19] |
IEEE J. on Sig. Proc., 1 (2007), 586-597. Google Scholar |
[20] |
IEEE J. in Sig. Proc., 1 (2007), 586-597. Google Scholar |
[21] |
Biostatistics, 9 (2008), 432-441.
doi: 10.1093/biostatistics/kxm045. |
[22] |
Technometrics, 49 (2007), 291-304.
doi: 10.1198/004017007000000245. |
[23] |
Neu. Comput., 13 (2001), 2517-2532.
doi: 10.1162/089976601753196003. |
[24] |
Technometrics, 21 (1979), 215-223.
doi: 10.1080/00401706.1979.10489751. |
[25] |
Geophysics, 69 (2004), 1216-1228. Google Scholar |
[26] |
IEEE trans. on Nuc. Sci., 44 (1997), 2425-2430. Google Scholar |
[27] |
SIAM, Philadelphia, 1998.
doi: 10.1137/1.9780898719697. |
[28] |
Inver. Problems, 25 (2009), 20pp.
doi: 10.1088/0266-5611/25/9/095009. |
[29] |
Wiley, New York, 1972. Google Scholar |
[30] |
J. Mach. Learning Research, accepted, 2012. Google Scholar |
[31] |
Birkhäuser, Boston, 2001. |
[32] |
Neu. Comput., 15 (2003), 349-396.
doi: 10.1162/089976603762552951. |
[33] |
in "Proc. of SPIE," 5914, (2005), 254-262.
doi: 10.1117/12.613494. |
[34] |
Neu. Comput., 12 (2000), 337-365.
doi: 10.1162/089976600300015826. |
[35] |
SIAM J. Optim., in press, 2011. Google Scholar |
[36] |
SIAM J. Optim., 19 (2009), 807-1827.
doi: 10.1137/070695915. |
[37] |
21 (2009), 1033-1040. Google Scholar |
[38] |
Academic Press, 2008. |
[39] |
Electronics Letters, 27 (1991), 1159-1161.
doi: 10.1049/el:19910723. |
[40] |
J. VLSI Sig. Proc., 45 (2006), 97-110.
doi: 10.1007/s11265-006-9774-5. |
[41] |
Technical Report 1673, mitai, (CBCL Memo 180), October 1999. Google Scholar |
[42] |
Springer-Verlag, New York, 1986. |
[43] |
IEEE Trans. on Image Proc., 14 (2005), 423-438.
doi: 10.1109/TIP.2005.843753. |
[44] |
in "Proc. of Sampta'11," 2011. Google Scholar |
[45] |
IEEE Trans. on Sig. Proc., 58 (2010), 1553-1564. |
[46] |
Cambridge, 2001. |
[47] |
Advances in Image and Elect. Phys., 128 (2003), 445-530. Google Scholar |
[48] |
The Annals of Stat., 6 (1978), 461-464.
doi: 10.1214/aos/1176344136. |
[49] |
Math. Program., 14 (1978), 149-160.
doi: 10.1007/BF01588962. |
[50] |
SIGKDD, 2012. Google Scholar |
[51] |
Neu. Netw., 15 (2002), 349-361.
doi: 10.1016/S0893-6080(02)00022-9. |
[52] |
J. Royal. Statist. Soc B., 58 (1996), 267-288. |
[53] |
Soviet Math. Dokl., 4 (1963), 1035-1038. Google Scholar |
[54] |
SIAM J. Scient. Comput., 31 (2008), 890-912.
doi: 10.1137/080714488. |
[55] |
Wiley, 1998. |
[56] |
SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898717570. |
[57] |
J. R. Statist. Soc. B, 71 (2009), 671-683.
doi: 10.1111/j.1467-9868.2008.00693.x. |
[58] |
IEEE Trans. on Sig. Proc., 52 (2004), 2153-2164. |
[59] |
24 (2011), 900-908. Google Scholar |
[60] |
SIAM J. Optim., 20, (2009), 627-649.
doi: 10.1137/070702187. |
show all references
References:
[1] |
IEEE Trans. Auto. Cont., 19 (1974), 716-723.
doi: 10.1109/TAC.1974.1100705. |
[2] |
IEEE Trans. Auto. Cont., 56 (2011), 2898-2911.
doi: 10.1109/TAC.2011.2141430. |
[3] |
SIAM J. Scient. Comput., 28 (2006), 339-358.
doi: 10.1137/040617261. |
[4] |
M2AN, Math. Model. Numer. Anal., 43 (2009), 689-708. |
[5] |
Proc. IEEE Intl. Conf. on Acous., Spee., and Sig. Proc., 2000. Google Scholar |
[6] |
SIAM Review, 51 (2009), 34-81.
doi: 10.1137/060657704. |
[7] |
E. J. Candès and D. L. Donoho, "Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges,", 1999., (). Google Scholar |
[8] |
IEEE In Sig. Proc. Magaz., 25 (2008), 21-30.
doi: 10.1109/MSP.2007.914731. |
[9] |
SIAM, 2005. |
[10] |
SIAM J. Imaging Sci., 3 (2010), 765-790.
doi: 10.1137/080740167. |
[11] |
SIAM Review, 41 (1999), 85-101.
doi: 10.1137/S0036144598333613. |
[12] |
Optim. Meth. and Soft., 23 (2008), 501-520.
doi: 10.1080/10556780802102693. |
[13] |
Numer. Math., 100 (2005), 21-47.
doi: 10.1007/s00211-004-0569-y. |
[14] |
SIAM J. Matrix Anal. Appl., 30 (2008), 56-66.
doi: 10.1137/060670985. |
[15] |
IEEE Trans. on Image Proc., 14 (2005), 2091-2106.
doi: 10.1109/TIP.2005.859376. |
[16] |
IEEE Trans. Image Proc., 20 (2011), 1838-1857.
doi: 10.1109/TIP.2011.2108306. |
[17] |
Inver. Problems, 23 (2007), 947-968.
doi: 10.1088/0266-5611/23/3/007. |
[18] |
Digit. Sig. Proc., 17 (2007), 32-49.
doi: 10.1016/j.dsp.2006.02.002. |
[19] |
IEEE J. on Sig. Proc., 1 (2007), 586-597. Google Scholar |
[20] |
IEEE J. in Sig. Proc., 1 (2007), 586-597. Google Scholar |
[21] |
Biostatistics, 9 (2008), 432-441.
doi: 10.1093/biostatistics/kxm045. |
[22] |
Technometrics, 49 (2007), 291-304.
doi: 10.1198/004017007000000245. |
[23] |
Neu. Comput., 13 (2001), 2517-2532.
doi: 10.1162/089976601753196003. |
[24] |
Technometrics, 21 (1979), 215-223.
doi: 10.1080/00401706.1979.10489751. |
[25] |
Geophysics, 69 (2004), 1216-1228. Google Scholar |
[26] |
IEEE trans. on Nuc. Sci., 44 (1997), 2425-2430. Google Scholar |
[27] |
SIAM, Philadelphia, 1998.
doi: 10.1137/1.9780898719697. |
[28] |
Inver. Problems, 25 (2009), 20pp.
doi: 10.1088/0266-5611/25/9/095009. |
[29] |
Wiley, New York, 1972. Google Scholar |
[30] |
J. Mach. Learning Research, accepted, 2012. Google Scholar |
[31] |
Birkhäuser, Boston, 2001. |
[32] |
Neu. Comput., 15 (2003), 349-396.
doi: 10.1162/089976603762552951. |
[33] |
in "Proc. of SPIE," 5914, (2005), 254-262.
doi: 10.1117/12.613494. |
[34] |
Neu. Comput., 12 (2000), 337-365.
doi: 10.1162/089976600300015826. |
[35] |
SIAM J. Optim., in press, 2011. Google Scholar |
[36] |
SIAM J. Optim., 19 (2009), 807-1827.
doi: 10.1137/070695915. |
[37] |
21 (2009), 1033-1040. Google Scholar |
[38] |
Academic Press, 2008. |
[39] |
Electronics Letters, 27 (1991), 1159-1161.
doi: 10.1049/el:19910723. |
[40] |
J. VLSI Sig. Proc., 45 (2006), 97-110.
doi: 10.1007/s11265-006-9774-5. |
[41] |
Technical Report 1673, mitai, (CBCL Memo 180), October 1999. Google Scholar |
[42] |
Springer-Verlag, New York, 1986. |
[43] |
IEEE Trans. on Image Proc., 14 (2005), 423-438.
doi: 10.1109/TIP.2005.843753. |
[44] |
in "Proc. of Sampta'11," 2011. Google Scholar |
[45] |
IEEE Trans. on Sig. Proc., 58 (2010), 1553-1564. |
[46] |
Cambridge, 2001. |
[47] |
Advances in Image and Elect. Phys., 128 (2003), 445-530. Google Scholar |
[48] |
The Annals of Stat., 6 (1978), 461-464.
doi: 10.1214/aos/1176344136. |
[49] |
Math. Program., 14 (1978), 149-160.
doi: 10.1007/BF01588962. |
[50] |
SIGKDD, 2012. Google Scholar |
[51] |
Neu. Netw., 15 (2002), 349-361.
doi: 10.1016/S0893-6080(02)00022-9. |
[52] |
J. Royal. Statist. Soc B., 58 (1996), 267-288. |
[53] |
Soviet Math. Dokl., 4 (1963), 1035-1038. Google Scholar |
[54] |
SIAM J. Scient. Comput., 31 (2008), 890-912.
doi: 10.1137/080714488. |
[55] |
Wiley, 1998. |
[56] |
SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898717570. |
[57] |
J. R. Statist. Soc. B, 71 (2009), 671-683.
doi: 10.1111/j.1467-9868.2008.00693.x. |
[58] |
IEEE Trans. on Sig. Proc., 52 (2004), 2153-2164. |
[59] |
24 (2011), 900-908. Google Scholar |
[60] |
SIAM J. Optim., 20, (2009), 627-649.
doi: 10.1137/070702187. |
[1] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[2] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[3] |
Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021084 |
[4] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021096 |
[5] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021101 |
[6] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[7] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[10] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[11] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[12] |
Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038 |
[13] |
Xu Zhang, Zhanglin Peng, Qiang Zhang, Xiaoan Tang, Panos M. Pardalos. Identifying and determining crowdsourcing service strategies: An empirical study on a crowdsourcing platform in China. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021045 |
[14] |
Sabyasachi Dey, Tapabrata Roy, Santanu Sarkar. Revisiting design principles of Salsa and ChaCha. Advances in Mathematics of Communications, 2019, 13 (4) : 689-704. doi: 10.3934/amc.2019041 |
[15] |
Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027 |
[16] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[17] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[18] |
Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021063 |
[19] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074 |
[20] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]