• Previous Article
    The Green function of the interior transmission problem and its applications
  • IPI Home
  • This Issue
  • Next Article
    Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint
August  2012, 6(3): 465-486. doi: 10.3934/ipi.2012.6.465

On the inverse doping profile problem

1. 

Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033, United States

2. 

Friends University, 2100 W University Ave, Wichita, KS 67213, United States

Received  April 2011 Revised  February 2012 Published  September 2012

We obtain new analytic results for the problem of the recovery of a doped region $D$ in semiconductor devices from the total flux of electrons/holes through a part of the boundary for various applied potentials on some complementary part of the boundary. We consider the stationary two-dimensional case and we use the index of the gradient of solutions of the linear elliptic equation modeling a unipolar device. Under mild assumptions we prove local uniqueness of smooth $D$ and global uniqueness of polygonal $D$ satisfying some geometrical (star-shapednedness or convexity in some direction) assumptions. We design a nonlinear minimization algorithm for numerical solution and we demonstrate its effectiveness on some basic examples. An essential ingredient of this algorithm is a numerical solution of the direct problem by using single layer potentials.
Citation: Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465
References:
[1]

G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement,, Trans. of AMS, 347 (1995), 3031.  doi: 10.1090/S0002-9947-1995-1303113-8.  Google Scholar

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,, SIAM J. Math. Anal., 25 (1994), 1259.  doi: 10.1137/S0036141093249080.  Google Scholar

[3]

M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices,, Inverse Problems, 17 (2001), 1765.  doi: 10.1088/0266-5611/17/6/315.  Google Scholar

[4]

M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations,, Milan J. of Mathematics, 72 (2004), 273.  doi: 10.1007/s00032-004-0025-6.  Google Scholar

[5]

V. G. Cherednichenko, "Inverse Logarithmic Potential Problem,", VSP, (1996).   Google Scholar

[6]

W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging,, SIAM J. Appl. Math., 62 (2002), 2149.  doi: 10.1137/S003613990139249X.  Google Scholar

[7]

V. Isakov, "Inverse Source Problems,", AMS, (1990).   Google Scholar

[8]

V. Isakov, "Inverse Problems for PDE,", Springer-Verlag, (2006).   Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems Imaging, 1 (2007), 95.   Google Scholar

[10]

V. Isakov, On identification of the doping profile in semiconductors,, Contemp. Math. AMS, 494 (2009), 123.  doi: 10.1090/conm/494/09647.  Google Scholar

[11]

H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients,, Inverse Problems, 13 (1997), 113.  doi: 10.1088/0266-5611/13/1/009.  Google Scholar

[12]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM J. Optim., 9 (1998), 112.   Google Scholar

[13]

A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map,, Inverse Problems, 22 (2006), 1071.  doi: 10.1088/0266-5611/22/3/021.  Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).   Google Scholar

[15]

N. I. Muskhelishvili, "Singular Integral Equations,", Nordhoff, (1953).   Google Scholar

[16]

D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization,, Technometrics, 7 (1975), 45.   Google Scholar

[17]

E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields,", Springer-Verlag, (1997).   Google Scholar

[18]

M. T. Wolfram, Inverse dopant profiling problems from transient measurement,, J. Comp. Electronics, 22 (2007), 409.  doi: 10.1007/s10825-007-0149-3.  Google Scholar

show all references

References:
[1]

G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement,, Trans. of AMS, 347 (1995), 3031.  doi: 10.1090/S0002-9947-1995-1303113-8.  Google Scholar

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,, SIAM J. Math. Anal., 25 (1994), 1259.  doi: 10.1137/S0036141093249080.  Google Scholar

[3]

M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices,, Inverse Problems, 17 (2001), 1765.  doi: 10.1088/0266-5611/17/6/315.  Google Scholar

[4]

M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations,, Milan J. of Mathematics, 72 (2004), 273.  doi: 10.1007/s00032-004-0025-6.  Google Scholar

[5]

V. G. Cherednichenko, "Inverse Logarithmic Potential Problem,", VSP, (1996).   Google Scholar

[6]

W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging,, SIAM J. Appl. Math., 62 (2002), 2149.  doi: 10.1137/S003613990139249X.  Google Scholar

[7]

V. Isakov, "Inverse Source Problems,", AMS, (1990).   Google Scholar

[8]

V. Isakov, "Inverse Problems for PDE,", Springer-Verlag, (2006).   Google Scholar

[9]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems Imaging, 1 (2007), 95.   Google Scholar

[10]

V. Isakov, On identification of the doping profile in semiconductors,, Contemp. Math. AMS, 494 (2009), 123.  doi: 10.1090/conm/494/09647.  Google Scholar

[11]

H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients,, Inverse Problems, 13 (1997), 113.  doi: 10.1088/0266-5611/13/1/009.  Google Scholar

[12]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM J. Optim., 9 (1998), 112.   Google Scholar

[13]

A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map,, Inverse Problems, 22 (2006), 1071.  doi: 10.1088/0266-5611/22/3/021.  Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).   Google Scholar

[15]

N. I. Muskhelishvili, "Singular Integral Equations,", Nordhoff, (1953).   Google Scholar

[16]

D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization,, Technometrics, 7 (1975), 45.   Google Scholar

[17]

E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields,", Springer-Verlag, (1997).   Google Scholar

[18]

M. T. Wolfram, Inverse dopant profiling problems from transient measurement,, J. Comp. Electronics, 22 (2007), 409.  doi: 10.1007/s10825-007-0149-3.  Google Scholar

[1]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[5]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[6]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[7]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[10]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[11]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[12]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[13]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[16]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[17]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[18]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[19]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]