• Previous Article
    The Green function of the interior transmission problem and its applications
  • IPI Home
  • This Issue
  • Next Article
    Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint
August  2012, 6(3): 465-486. doi: 10.3934/ipi.2012.6.465

On the inverse doping profile problem

1. 

Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033, United States

2. 

Friends University, 2100 W University Ave, Wichita, KS 67213, United States

Received  April 2011 Revised  February 2012 Published  September 2012

We obtain new analytic results for the problem of the recovery of a doped region $D$ in semiconductor devices from the total flux of electrons/holes through a part of the boundary for various applied potentials on some complementary part of the boundary. We consider the stationary two-dimensional case and we use the index of the gradient of solutions of the linear elliptic equation modeling a unipolar device. Under mild assumptions we prove local uniqueness of smooth $D$ and global uniqueness of polygonal $D$ satisfying some geometrical (star-shapednedness or convexity in some direction) assumptions. We design a nonlinear minimization algorithm for numerical solution and we demonstrate its effectiveness on some basic examples. An essential ingredient of this algorithm is a numerical solution of the direct problem by using single layer potentials.
Citation: Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465
References:
[1]

Trans. of AMS, 347 (1995), 3031-3041. doi: 10.1090/S0002-9947-1995-1303113-8.  Google Scholar

[2]

SIAM J. Math. Anal., 25 (1994), 1259-1269. doi: 10.1137/S0036141093249080.  Google Scholar

[3]

Inverse Problems, 17 (2001), 1765-1795. doi: 10.1088/0266-5611/17/6/315.  Google Scholar

[4]

Milan J. of Mathematics, 72 (2004), 273-314. doi: 10.1007/s00032-004-0025-6.  Google Scholar

[5]

VSP, Utrecht, 1996.  Google Scholar

[6]

SIAM J. Appl. Math., 62 (2002), 2149-2174. doi: 10.1137/S003613990139249X.  Google Scholar

[7]

AMS, Providence, RI, 1990.  Google Scholar

[8]

Springer-Verlag, New York, 2006.  Google Scholar

[9]

Inverse Problems Imaging, 1 (2007), 95-107.  Google Scholar

[10]

Contemp. Math. AMS, 494 (2009), 123-137. doi: 10.1090/conm/494/09647.  Google Scholar

[11]

Inverse Problems, 13 (1997), 113-123. doi: 10.1088/0266-5611/13/1/009.  Google Scholar

[12]

SIAM J. Optim., 9 (1998), 112-147.  Google Scholar

[13]

Inverse Problems, 22 (2006), 1071-1088. doi: 10.1088/0266-5611/22/3/021.  Google Scholar

[14]

Springer-Verlag, Vienna, 1990.  Google Scholar

[15]

Nordhoff, Holland, 1953.  Google Scholar

[16]

Technometrics, 7 (1975), 45-51. Google Scholar

[17]

Springer-Verlag, 1997  Google Scholar

[18]

J. Comp. Electronics, 22 (2007), 409-420. doi: 10.1007/s10825-007-0149-3.  Google Scholar

show all references

References:
[1]

Trans. of AMS, 347 (1995), 3031-3041. doi: 10.1090/S0002-9947-1995-1303113-8.  Google Scholar

[2]

SIAM J. Math. Anal., 25 (1994), 1259-1269. doi: 10.1137/S0036141093249080.  Google Scholar

[3]

Inverse Problems, 17 (2001), 1765-1795. doi: 10.1088/0266-5611/17/6/315.  Google Scholar

[4]

Milan J. of Mathematics, 72 (2004), 273-314. doi: 10.1007/s00032-004-0025-6.  Google Scholar

[5]

VSP, Utrecht, 1996.  Google Scholar

[6]

SIAM J. Appl. Math., 62 (2002), 2149-2174. doi: 10.1137/S003613990139249X.  Google Scholar

[7]

AMS, Providence, RI, 1990.  Google Scholar

[8]

Springer-Verlag, New York, 2006.  Google Scholar

[9]

Inverse Problems Imaging, 1 (2007), 95-107.  Google Scholar

[10]

Contemp. Math. AMS, 494 (2009), 123-137. doi: 10.1090/conm/494/09647.  Google Scholar

[11]

Inverse Problems, 13 (1997), 113-123. doi: 10.1088/0266-5611/13/1/009.  Google Scholar

[12]

SIAM J. Optim., 9 (1998), 112-147.  Google Scholar

[13]

Inverse Problems, 22 (2006), 1071-1088. doi: 10.1088/0266-5611/22/3/021.  Google Scholar

[14]

Springer-Verlag, Vienna, 1990.  Google Scholar

[15]

Nordhoff, Holland, 1953.  Google Scholar

[16]

Technometrics, 7 (1975), 45-51. Google Scholar

[17]

Springer-Verlag, 1997  Google Scholar

[18]

J. Comp. Electronics, 22 (2007), 409-420. doi: 10.1007/s10825-007-0149-3.  Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[3]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[4]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[5]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[8]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[9]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[10]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[12]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[13]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[15]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[16]

Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2097-2118. doi: 10.3934/jimo.2020060

[17]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[18]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[19]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[20]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]