Advanced Search
Article Contents
Article Contents

On the inverse doping profile problem

Abstract Related Papers Cited by
  • We obtain new analytic results for the problem of the recovery of a doped region $D$ in semiconductor devices from the total flux of electrons/holes through a part of the boundary for various applied potentials on some complementary part of the boundary. We consider the stationary two-dimensional case and we use the index of the gradient of solutions of the linear elliptic equation modeling a unipolar device. Under mild assumptions we prove local uniqueness of smooth $D$ and global uniqueness of polygonal $D$ satisfying some geometrical (star-shapednedness or convexity in some direction) assumptions. We design a nonlinear minimization algorithm for numerical solution and we demonstrate its effectiveness on some basic examples. An essential ingredient of this algorithm is a numerical solution of the direct problem by using single layer potentials.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 78A46.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement, Trans. of AMS, 347 (1995), 3031-3041.doi: 10.1090/S0002-9947-1995-1303113-8.


    G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1269.doi: 10.1137/S0036141093249080.


    M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices, Inverse Problems, 17 (2001), 1765-1795.doi: 10.1088/0266-5611/17/6/315.


    M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations, Milan J. of Mathematics, 72 (2004), 273-314.doi: 10.1007/s00032-004-0025-6.


    V. G. Cherednichenko, "Inverse Logarithmic Potential Problem," VSP, Utrecht, 1996.


    W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging, SIAM J. Appl. Math., 62 (2002), 2149-2174.doi: 10.1137/S003613990139249X.


    V. Isakov, "Inverse Source Problems," AMS, Providence, RI, 1990.


    V. Isakov, "Inverse Problems for PDE," Springer-Verlag, New York, 2006.


    V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Problems Imaging, 1 (2007), 95-107.


    V. Isakov, On identification of the doping profile in semiconductors, Contemp. Math. AMS, 494 (2009), 123-137.doi: 10.1090/conm/494/09647.


    H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems, 13 (1997), 113-123.doi: 10.1088/0266-5611/13/1/009.


    J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9 (1998), 112-147.


    A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map, Inverse Problems, 22 (2006), 1071-1088.doi: 10.1088/0266-5611/22/3/021.


    P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990.


    N. I. Muskhelishvili, "Singular Integral Equations," Nordhoff, Holland, 1953.


    D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization, Technometrics, 7 (1975), 45-51.


    E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields," Springer-Verlag, 1997


    M. T. Wolfram, Inverse dopant profiling problems from transient measurement, J. Comp. Electronics, 22 (2007), 409-420.doi: 10.1007/s10825-007-0149-3.

  • 加载中

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint