-
Previous Article
The Green function of the interior transmission problem and its applications
- IPI Home
- This Issue
-
Next Article
Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint
On the inverse doping profile problem
1. | Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033, United States |
2. | Friends University, 2100 W University Ave, Wichita, KS 67213, United States |
References:
[1] |
G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement, Trans. of AMS, 347 (1995), 3031-3041.
doi: 10.1090/S0002-9947-1995-1303113-8. |
[2] |
G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1269.
doi: 10.1137/S0036141093249080. |
[3] |
M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices, Inverse Problems, 17 (2001), 1765-1795.
doi: 10.1088/0266-5611/17/6/315. |
[4] |
M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations, Milan J. of Mathematics, 72 (2004), 273-314.
doi: 10.1007/s00032-004-0025-6. |
[5] |
V. G. Cherednichenko, "Inverse Logarithmic Potential Problem," VSP, Utrecht, 1996. |
[6] |
W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging, SIAM J. Appl. Math., 62 (2002), 2149-2174.
doi: 10.1137/S003613990139249X. |
[7] |
V. Isakov, "Inverse Source Problems," AMS, Providence, RI, 1990. |
[8] |
V. Isakov, "Inverse Problems for PDE," Springer-Verlag, New York, 2006. |
[9] |
V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Problems Imaging, 1 (2007), 95-107. |
[10] |
V. Isakov, On identification of the doping profile in semiconductors, Contemp. Math. AMS, 494 (2009), 123-137.
doi: 10.1090/conm/494/09647. |
[11] |
H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems, 13 (1997), 113-123.
doi: 10.1088/0266-5611/13/1/009. |
[12] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9 (1998), 112-147. |
[13] |
A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map, Inverse Problems, 22 (2006), 1071-1088.
doi: 10.1088/0266-5611/22/3/021. |
[14] |
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990. |
[15] |
N. I. Muskhelishvili, "Singular Integral Equations," Nordhoff, Holland, 1953. |
[16] |
D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization, Technometrics, 7 (1975), 45-51. |
[17] |
E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields," Springer-Verlag, 1997 |
[18] |
M. T. Wolfram, Inverse dopant profiling problems from transient measurement, J. Comp. Electronics, 22 (2007), 409-420.
doi: 10.1007/s10825-007-0149-3. |
show all references
References:
[1] |
G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement, Trans. of AMS, 347 (1995), 3031-3041.
doi: 10.1090/S0002-9947-1995-1303113-8. |
[2] |
G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1269.
doi: 10.1137/S0036141093249080. |
[3] |
M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices, Inverse Problems, 17 (2001), 1765-1795.
doi: 10.1088/0266-5611/17/6/315. |
[4] |
M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations, Milan J. of Mathematics, 72 (2004), 273-314.
doi: 10.1007/s00032-004-0025-6. |
[5] |
V. G. Cherednichenko, "Inverse Logarithmic Potential Problem," VSP, Utrecht, 1996. |
[6] |
W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging, SIAM J. Appl. Math., 62 (2002), 2149-2174.
doi: 10.1137/S003613990139249X. |
[7] |
V. Isakov, "Inverse Source Problems," AMS, Providence, RI, 1990. |
[8] |
V. Isakov, "Inverse Problems for PDE," Springer-Verlag, New York, 2006. |
[9] |
V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Problems Imaging, 1 (2007), 95-107. |
[10] |
V. Isakov, On identification of the doping profile in semiconductors, Contemp. Math. AMS, 494 (2009), 123-137.
doi: 10.1090/conm/494/09647. |
[11] |
H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems, 13 (1997), 113-123.
doi: 10.1088/0266-5611/13/1/009. |
[12] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9 (1998), 112-147. |
[13] |
A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map, Inverse Problems, 22 (2006), 1071-1088.
doi: 10.1088/0266-5611/22/3/021. |
[14] |
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Vienna, 1990. |
[15] |
N. I. Muskhelishvili, "Singular Integral Equations," Nordhoff, Holland, 1953. |
[16] |
D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization, Technometrics, 7 (1975), 45-51. |
[17] |
E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields," Springer-Verlag, 1997 |
[18] |
M. T. Wolfram, Inverse dopant profiling problems from transient measurement, J. Comp. Electronics, 22 (2007), 409-420.
doi: 10.1007/s10825-007-0149-3. |
[1] |
Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 |
[2] |
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793 |
[3] |
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 |
[4] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
[5] |
Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems and Imaging, 2019, 13 (3) : 597-633. doi: 10.3934/ipi.2019028 |
[6] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267 |
[7] |
Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215 |
[8] |
Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026 |
[9] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[10] |
Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749 |
[11] |
Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19 |
[12] |
Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010 |
[13] |
Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025 |
[14] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
[15] |
Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059 |
[16] |
Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1 |
[17] |
Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1 |
[18] |
Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225 |
[19] |
Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems and Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239 |
[20] |
Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems and Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]