-
Previous Article
The Green function of the interior transmission problem and its applications
- IPI Home
- This Issue
-
Next Article
Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint
On the inverse doping profile problem
1. | Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033, United States |
2. | Friends University, 2100 W University Ave, Wichita, KS 67213, United States |
References:
[1] |
G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement,, Trans. of AMS, 347 (1995), 3031.
doi: 10.1090/S0002-9947-1995-1303113-8. |
[2] |
G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,, SIAM J. Math. Anal., 25 (1994), 1259.
doi: 10.1137/S0036141093249080. |
[3] |
M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices,, Inverse Problems, 17 (2001), 1765.
doi: 10.1088/0266-5611/17/6/315. |
[4] |
M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations,, Milan J. of Mathematics, 72 (2004), 273.
doi: 10.1007/s00032-004-0025-6. |
[5] |
V. G. Cherednichenko, "Inverse Logarithmic Potential Problem,", VSP, (1996).
|
[6] |
W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging,, SIAM J. Appl. Math., 62 (2002), 2149.
doi: 10.1137/S003613990139249X. |
[7] |
V. Isakov, "Inverse Source Problems,", AMS, (1990).
|
[8] |
V. Isakov, "Inverse Problems for PDE,", Springer-Verlag, (2006).
|
[9] |
V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems Imaging, 1 (2007), 95.
|
[10] |
V. Isakov, On identification of the doping profile in semiconductors,, Contemp. Math. AMS, 494 (2009), 123.
doi: 10.1090/conm/494/09647. |
[11] |
H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients,, Inverse Problems, 13 (1997), 113.
doi: 10.1088/0266-5611/13/1/009. |
[12] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM J. Optim., 9 (1998), 112.
|
[13] |
A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map,, Inverse Problems, 22 (2006), 1071.
doi: 10.1088/0266-5611/22/3/021. |
[14] |
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).
|
[15] |
N. I. Muskhelishvili, "Singular Integral Equations,", Nordhoff, (1953).
|
[16] |
D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization,, Technometrics, 7 (1975), 45. Google Scholar |
[17] |
E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields,", Springer-Verlag, (1997).
|
[18] |
M. T. Wolfram, Inverse dopant profiling problems from transient measurement,, J. Comp. Electronics, 22 (2007), 409.
doi: 10.1007/s10825-007-0149-3. |
show all references
References:
[1] |
G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse conductivity problem with one measurement,, Trans. of AMS, 347 (1995), 3031.
doi: 10.1090/S0002-9947-1995-1303113-8. |
[2] |
G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,, SIAM J. Math. Anal., 25 (1994), 1259.
doi: 10.1137/S0036141093249080. |
[3] |
M. Burger, H. W. Engl, P. A. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices,, Inverse Problems, 17 (2001), 1765.
doi: 10.1088/0266-5611/17/6/315. |
[4] |
M. Burger, H. W. Engl, A. Leitao and P. A. Markowich, On inverse problems for semiconductor equations,, Milan J. of Mathematics, 72 (2004), 273.
doi: 10.1007/s00032-004-0025-6. |
[5] |
V. G. Cherednichenko, "Inverse Logarithmic Potential Problem,", VSP, (1996).
|
[6] |
W. Fang, K. Ito and D. A. Redfern, Parameter identification for semiconductor diodes by LBIC imaging,, SIAM J. Appl. Math., 62 (2002), 2149.
doi: 10.1137/S003613990139249X. |
[7] |
V. Isakov, "Inverse Source Problems,", AMS, (1990).
|
[8] |
V. Isakov, "Inverse Problems for PDE,", Springer-Verlag, (2006).
|
[9] |
V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Problems Imaging, 1 (2007), 95.
|
[10] |
V. Isakov, On identification of the doping profile in semiconductors,, Contemp. Math. AMS, 494 (2009), 123.
doi: 10.1090/conm/494/09647. |
[11] |
H. Kang, J. K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients,, Inverse Problems, 13 (1997), 113.
doi: 10.1088/0266-5611/13/1/009. |
[12] |
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions,, SIAM J. Optim., 9 (1998), 112.
|
[13] |
A. Leitao, P. Markowich and J. P. Zubelli, On inverse doping profile problems for stationary voltage-current map,, Inverse Problems, 22 (2006), 1071.
doi: 10.1088/0266-5611/22/3/021. |
[14] |
P. A. Markowich, C. A. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).
|
[15] |
N. I. Muskhelishvili, "Singular Integral Equations,", Nordhoff, (1953).
|
[16] |
D. M. Olsson and L. S. Nelson, The Nelder-Mead simplex procedure for function minimization,, Technometrics, 7 (1975), 45. Google Scholar |
[17] |
E. P. Saff and V. Totik, "Logarithmic Potentials with External Fields,", Springer-Verlag, (1997).
|
[18] |
M. T. Wolfram, Inverse dopant profiling problems from transient measurement,, J. Comp. Electronics, 22 (2007), 409.
doi: 10.1007/s10825-007-0149-3. |
[1] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[2] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[3] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[4] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 |
[5] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[6] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[7] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[8] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[9] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[10] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[11] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[12] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[13] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[14] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[15] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[16] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[17] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[18] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
[19] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[20] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]