August  2012, 6(3): 487-521. doi: 10.3934/ipi.2012.6.487

The Green function of the interior transmission problem and its applications

1. 

Department of Mathematics of Inha University, Incheon 402-751, South Korea

2. 

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

3. 

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz A-4040, Australia

Received  February 2012 Revised  May 2012 Published  September 2012

The interior transmission problem appears naturally in the scattering theory. In this paper, we construct the Green function associated to this problem. In addition, we provide point-wise estimates of this Green function similar to those known for the Green function related to the classical transmission problems. These estimates are, in particular, useful to the study of various inverse scattering problems. Here, we apply them to justify some asymptotic formulas already used for detecting partially coated dielectric mediums from far field measurements.
Citation: Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487
References:
[1]

Inverse Problems, 26 (2010), 29pp.  Google Scholar

[2]

Interaction of Mechanics and Mathematics, Springer, 2006.  Google Scholar

[3]

J. Comput. Appl. Math., 146 (2002), 285-299. doi: 10.1016/S0377-0427(02)00361-8.  Google Scholar

[4]

Appl. Anal., 88 (2009), 475-493. doi: 10.1080/00036810802713966.  Google Scholar

[5]

Applicable Analysis, 89 (2010), 67-86. doi: 10.1080/00036810903437820.  Google Scholar

[6]

Inverse Problems, 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[7]

Inverse Problems and Imaging, 1 (2007), 13-28.  Google Scholar

[8]

North-Holland, Amsterdam, 1982.  Google Scholar

[9]

Math. Res. Lett., 18 (2011), 279-293.  Google Scholar

[10]

Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008.  Google Scholar

[11]

MIT Press, Cambridge, 1981.  Google Scholar

[12]

SIAM J. Math. Anal., 44 (2012), 1165-1174.  Google Scholar

[13]

SIAM J. Appl. Math., 67 (2007), 1124-1146. doi: 10.1137/060654220.  Google Scholar

[14]

SIAM J. Scient. Comp., 31 (2009), 2665-2687. doi: 10.1137/080718024.  Google Scholar

[15]

Cambridge University Press, Cambridge, 2000.  Google Scholar

[16]

SIAM J. Math. Anal., 39 (2007), 819-837. doi: 10.1137/060658667.  Google Scholar

[17]

SIAM J. Math. Anal., 40 (2008), 738-753. doi: 10.1137/070697525.  Google Scholar

[18]

Amer. J. of Math., 91 (1969), 889-920. doi: 10.2307/2373309.  Google Scholar

[19]

AMS, Providence, 1992.  Google Scholar

[20]

Applied Mathematical Sciences, 116, Springer-Verlag, 1996.  Google Scholar

[21]

Inverse Problems, 26 (2010), 29 pp. doi: 10.1088/0266-5611/26/1/015010.  Google Scholar

[22]

Inverse Problems, 26 (2010), 24 pp.  Google Scholar

[23]

1, Plenum, New York, 1980.  Google Scholar

[24]

Appl. Anal., 83 (2004), 825-851. doi: 10.1080/00036810410001689283.  Google Scholar

show all references

References:
[1]

Inverse Problems, 26 (2010), 29pp.  Google Scholar

[2]

Interaction of Mechanics and Mathematics, Springer, 2006.  Google Scholar

[3]

J. Comput. Appl. Math., 146 (2002), 285-299. doi: 10.1016/S0377-0427(02)00361-8.  Google Scholar

[4]

Appl. Anal., 88 (2009), 475-493. doi: 10.1080/00036810802713966.  Google Scholar

[5]

Applicable Analysis, 89 (2010), 67-86. doi: 10.1080/00036810903437820.  Google Scholar

[6]

Inverse Problems, 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[7]

Inverse Problems and Imaging, 1 (2007), 13-28.  Google Scholar

[8]

North-Holland, Amsterdam, 1982.  Google Scholar

[9]

Math. Res. Lett., 18 (2011), 279-293.  Google Scholar

[10]

Oxford Lecture Series in Mathematics and its Applications, 36, Oxford University Press, Oxford, 2008.  Google Scholar

[11]

MIT Press, Cambridge, 1981.  Google Scholar

[12]

SIAM J. Math. Anal., 44 (2012), 1165-1174.  Google Scholar

[13]

SIAM J. Appl. Math., 67 (2007), 1124-1146. doi: 10.1137/060654220.  Google Scholar

[14]

SIAM J. Scient. Comp., 31 (2009), 2665-2687. doi: 10.1137/080718024.  Google Scholar

[15]

Cambridge University Press, Cambridge, 2000.  Google Scholar

[16]

SIAM J. Math. Anal., 39 (2007), 819-837. doi: 10.1137/060658667.  Google Scholar

[17]

SIAM J. Math. Anal., 40 (2008), 738-753. doi: 10.1137/070697525.  Google Scholar

[18]

Amer. J. of Math., 91 (1969), 889-920. doi: 10.2307/2373309.  Google Scholar

[19]

AMS, Providence, 1992.  Google Scholar

[20]

Applied Mathematical Sciences, 116, Springer-Verlag, 1996.  Google Scholar

[21]

Inverse Problems, 26 (2010), 29 pp. doi: 10.1088/0266-5611/26/1/015010.  Google Scholar

[22]

Inverse Problems, 26 (2010), 24 pp.  Google Scholar

[23]

1, Plenum, New York, 1980.  Google Scholar

[24]

Appl. Anal., 83 (2004), 825-851. doi: 10.1080/00036810410001689283.  Google Scholar

[1]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[2]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[3]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[4]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[5]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082

[6]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[7]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[8]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[9]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[10]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[11]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[12]

Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021040

[13]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[14]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[15]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[16]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[17]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[18]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[19]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[20]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]