August  2012, 6(3): 487-521. doi: 10.3934/ipi.2012.6.487

The Green function of the interior transmission problem and its applications

1. 

Department of Mathematics of Inha University, Incheon 402-751, South Korea

2. 

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

3. 

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz A-4040, Australia

Received  February 2012 Revised  May 2012 Published  September 2012

The interior transmission problem appears naturally in the scattering theory. In this paper, we construct the Green function associated to this problem. In addition, we provide point-wise estimates of this Green function similar to those known for the Green function related to the classical transmission problems. These estimates are, in particular, useful to the study of various inverse scattering problems. Here, we apply them to justify some asymptotic formulas already used for detecting partially coated dielectric mediums from far field measurements.
Citation: Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487
References:
[1]

M. F. Ben Hassen, O. Ivanyshyn and M. Sini, Three-dimensional acoustic scattering by complex obstacles. The accuracy issue,, Inverse Problems, 26 (2010).   Google Scholar

[2]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory. An Introduction,'', Interaction of Mechanics and Mathematics, (2006).   Google Scholar

[3]

F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media,, J. Comput. Appl. Math., 146 (2002), 285.  doi: 10.1016/S0377-0427(02)00361-8.  Google Scholar

[4]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium,, Appl. Anal., 88 (2009), 475.  doi: 10.1080/00036810802713966.  Google Scholar

[5]

F. Cakoni, G. Nakamura, M. Sini and N. Zeev, The identification of a partially coated dielectric from far field measurements,, Applicable Analysis, 89 (2010), 67.  doi: 10.1080/00036810903437820.  Google Scholar

[6]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[7]

D. Colton, L. Paivarinta and J. Sylvester, The interior transmission problem,, Inverse Problems and Imaging, 1 (2007), 13.   Google Scholar

[8]

J. Chazarain and A. Piriou, "Introduction to the Theory of Linear Partial Differential Equations,'', North-Holland, (1982).   Google Scholar

[9]

M. Hitrik, K. Krupchyk, P. Ola and L. Paivarinta, The interior transmission problem and bounds on transmission eigenvalues,, Math. Res. Lett., 18 (2011), 279.   Google Scholar

[10]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,'', Oxford Lecture Series in Mathematics and its Applications, (2008).   Google Scholar

[11]

H. Kumanogo, "Pseudodifferential Operators,'', MIT Press, (1981).   Google Scholar

[12]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media,, SIAM J. Math. Anal., 44 (2012), 1165.   Google Scholar

[13]

J. J. Liu, G. Nakamura and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for arbitrary cylinder,, SIAM J. Appl. Math., 67 (2007), 1124.  doi: 10.1137/060654220.  Google Scholar

[14]

J. Liu and M. Sini, On the accuracy of the numerical detection of complex obstacles from far field data using the probe method,, SIAM J. Scient. Comp., 31 (2009), 2665.  doi: 10.1137/080718024.  Google Scholar

[15]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'', Cambridge University Press, (2000).   Google Scholar

[16]

G. Nakamura and M. Sini, Obstacle and boundary determination from scattering data,, SIAM J. Math. Anal., 39 (2007), 819.  doi: 10.1137/060658667.  Google Scholar

[17]

L. Paivarinta and J. Sylvester, Transmission eigenvalues,, SIAM J. Math. Anal., 40 (2008), 738.  doi: 10.1137/070697525.  Google Scholar

[18]

R. Seeley, The resolvent of an elliptic boundary problem,, Amer. J. of Math., 91 (1969), 889.  doi: 10.2307/2373309.  Google Scholar

[19]

N. Shimakura, "Partial Differential Operators of Elliptic Type,'', AMS, (1992).   Google Scholar

[20]

M. E. Taylor, "Partial Differential Equations II. Qualitative Studies of Linear Equations,'', Applied Mathematical Sciences, (1996).   Google Scholar

[21]

N. T. Thanh and M. Sini, An analysis of the accuracy of the linear sampling method for an acoustic inverse obstacle scattering problem,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/1/015010.  Google Scholar

[22]

N. T. Thanh and M. Sini, Accuracy of the linear sampling method for inverse obstacle scattering: effect of geometrical and physical parameters,, Inverse Problems, 26 (2010).   Google Scholar

[23]

F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators,'', 1, 1 (1980).   Google Scholar

[24]

N. Valdivia, Uniqueness in inverse obstacle scattering with conductive boundary conditions,, Appl. Anal., 83 (2004), 825.  doi: 10.1080/00036810410001689283.  Google Scholar

show all references

References:
[1]

M. F. Ben Hassen, O. Ivanyshyn and M. Sini, Three-dimensional acoustic scattering by complex obstacles. The accuracy issue,, Inverse Problems, 26 (2010).   Google Scholar

[2]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory. An Introduction,'', Interaction of Mechanics and Mathematics, (2006).   Google Scholar

[3]

F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media,, J. Comput. Appl. Math., 146 (2002), 285.  doi: 10.1016/S0377-0427(02)00361-8.  Google Scholar

[4]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium,, Appl. Anal., 88 (2009), 475.  doi: 10.1080/00036810802713966.  Google Scholar

[5]

F. Cakoni, G. Nakamura, M. Sini and N. Zeev, The identification of a partially coated dielectric from far field measurements,, Applicable Analysis, 89 (2010), 67.  doi: 10.1080/00036810903437820.  Google Scholar

[6]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[7]

D. Colton, L. Paivarinta and J. Sylvester, The interior transmission problem,, Inverse Problems and Imaging, 1 (2007), 13.   Google Scholar

[8]

J. Chazarain and A. Piriou, "Introduction to the Theory of Linear Partial Differential Equations,'', North-Holland, (1982).   Google Scholar

[9]

M. Hitrik, K. Krupchyk, P. Ola and L. Paivarinta, The interior transmission problem and bounds on transmission eigenvalues,, Math. Res. Lett., 18 (2011), 279.   Google Scholar

[10]

A. Kirsch and N. Grinberg, "The Factorization Method for Inverse Problems,'', Oxford Lecture Series in Mathematics and its Applications, (2008).   Google Scholar

[11]

H. Kumanogo, "Pseudodifferential Operators,'', MIT Press, (1981).   Google Scholar

[12]

E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media,, SIAM J. Math. Anal., 44 (2012), 1165.   Google Scholar

[13]

J. J. Liu, G. Nakamura and M. Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for arbitrary cylinder,, SIAM J. Appl. Math., 67 (2007), 1124.  doi: 10.1137/060654220.  Google Scholar

[14]

J. Liu and M. Sini, On the accuracy of the numerical detection of complex obstacles from far field data using the probe method,, SIAM J. Scient. Comp., 31 (2009), 2665.  doi: 10.1137/080718024.  Google Scholar

[15]

W. McLean, "Strongly Elliptic Systems and Boundary Integral Equations,'', Cambridge University Press, (2000).   Google Scholar

[16]

G. Nakamura and M. Sini, Obstacle and boundary determination from scattering data,, SIAM J. Math. Anal., 39 (2007), 819.  doi: 10.1137/060658667.  Google Scholar

[17]

L. Paivarinta and J. Sylvester, Transmission eigenvalues,, SIAM J. Math. Anal., 40 (2008), 738.  doi: 10.1137/070697525.  Google Scholar

[18]

R. Seeley, The resolvent of an elliptic boundary problem,, Amer. J. of Math., 91 (1969), 889.  doi: 10.2307/2373309.  Google Scholar

[19]

N. Shimakura, "Partial Differential Operators of Elliptic Type,'', AMS, (1992).   Google Scholar

[20]

M. E. Taylor, "Partial Differential Equations II. Qualitative Studies of Linear Equations,'', Applied Mathematical Sciences, (1996).   Google Scholar

[21]

N. T. Thanh and M. Sini, An analysis of the accuracy of the linear sampling method for an acoustic inverse obstacle scattering problem,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/1/015010.  Google Scholar

[22]

N. T. Thanh and M. Sini, Accuracy of the linear sampling method for inverse obstacle scattering: effect of geometrical and physical parameters,, Inverse Problems, 26 (2010).   Google Scholar

[23]

F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators,'', 1, 1 (1980).   Google Scholar

[24]

N. Valdivia, Uniqueness in inverse obstacle scattering with conductive boundary conditions,, Appl. Anal., 83 (2004), 825.  doi: 10.1080/00036810410001689283.  Google Scholar

[1]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[2]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[12]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]