\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non rigid geometric distortions correction - Application to atmospheric turbulence stabilization

Abstract / Introduction Related Papers Cited by
  • A novel approach is presented to recover an image degraded by atmospheric turbulence. Given a sequence of frames affected by turbulence, we construct a variational model to characterize the static image. The optimization problem is solved by Bregman Iteration and the operator splitting method. Our algorithm is simple, efficient, and can be easily generalized for different scenarios.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. S. C. Almeida and L. B. Almeida, Blind and semi-blind deblurring of natural images, IEEE Transactions on Image Processing, 19 (2010), 36-52.doi: 10.1109/TIP.2009.2031231.

    [2]

    M. Aubailly, M. A. Vorontsov, G. W. Carhat and M. T. Valley, "Automated Video Enhancement from a Stream of Atmospherically-Distorted Images: the Lucky-Region Fusion Approach," Proceedings of SPIE, 7463 (2009).

    [3]

    M. J. Black and P. Anandan, The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields, Comput Vision and Image Understanding, 63 (1996), 75-104.doi: 10.1006/cviu.1996.0006.

    [4]

    J. Y. Bouguet, "Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the Algorithm," Intel Corporation Microprocessor Research Labs, 2000. Available from: http://robots.stanford.edu/cs223b04/algo_tracking.pdf.

    [5]

    A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model Sim, 4 (2005), 490-530.

    [6]

    J. F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for frame-based image deblurring, SIAM Journal on Imaging Sciences, 2 (2009), 226-252.

    [7]

    J. F. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Modeling and Simulation, 8 (2009), 337-369.

    [8]

    T. F. Chan and C. K. Wong, Convergence of the alternating minimization algorithm for blind deconvolution, Linear Algebra Appl., 316 (2000), 259-285.doi: 10.1016/S0024-3795(00)00141-5.

    [9]

    T. F. Chan, A. M. Yip and F. E. Park, Simultaneous total variation image inpainting and blind deconvolution, International Journal of Imaging Systems and Technology, 15 (2005), 92-102.doi: 10.1002/ima.20041.

    [10]

    P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model Sim., 4 (2005), 1168-1200.

    [11]

    D. Frakes, J. Monaco and M. Smith, "Suppression of Atmospheric Turbulence in Video Using an Adaptive Control Grid Interpolation Approach," Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001.

    [12]

    S. Gepshtein, A. Shteinman and B. Fishbain, "Restoration of Atmospheric Turbulent Video Containing Real Motion Using Rank Filtering and Elastic Image Registration," Proceedings of the Eusipco, 2004.

    [13]

    G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model Sim., 7 (2008), 1005-1028.

    [14]

    J. Gilles, T. Dagobert and C. De Franchis, Atmospheric turbulence restoration by diffeomorphic image registration and blind deconvolution, in "Proceedings of Advanced Concepts for Intelligent Vision Systems,'' 2008.

    [15]

    D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization, SIAM J. Sci. Comput., 31 (2009), 3712-3743.doi: 10.1137/070706318.

    [16]

    T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.

    [17]

    L. He, A. Marquina and S. Osher, Blind deconvolution using TV regularization and Bregman iteration, International Journal of Imaging Systems and Technology, 15 (2005), 74-83.doi: 10.1002/ima.20040.

    [18]

    M. Hirsch, S. Sra, B. Scholkopf and S. Harmeling, "Efficient Filter Flow for Space-variant Multiframe Blind Deconvolution," Computer Vision and Pattern Recognition Conference, 2010.

    [19]

    M. Lemaitre, "Etude de la Turbulence Atmosphérique en Vision Horizontale Lointaine et Restauration de Séquences Dégradées Dans le Visible et L'infrarouge,'' Ph. D Thesis, Université de Bourgogne, 2007.

    [20]

    D. Li, R. M. Mersereau and S. Simske, Atmospheric turbulence-degraded image restoration using principal components analysis, IEEE Geoscience and Remote Sensing Letters, 4 (2007), 340-344.

    [21]

    P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.doi: 10.1137/0716071.

    [22]

    Y. Mao, B. P. Fahimian, S. Osher and J. Miao, Development and optimization of regularized tomographic reconstruction algorithms utilizing equally-sloped tomography, IEEE Transactions on Image Processing, 19 (2010), 1259-1268.doi: 10.1109/TIP.2009.2039660.

    [23]

    S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model Sim., 4 (2005), 460-489.

    [24]

    G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383-390.doi: 10.1016/0022-247X(79)90234-8.

    [25]

    L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.

    [26]

    D. Sun, S. Roth, J. Lewis and M. J. Black, "Learning Optical Flow," Computer Vision-ECCV, 2008.

    [27]

    M. Tahtali, A. Lambert and D. Fraser, "Self-tuning Kalman Filter Estimation of Atmospheric Warp," Proceedings of SPIE, 2008.

    [28]

    X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276.

    [29]

    X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, Journal of Scientific Computing, 46 (2010), 1-27.

    [30]

    X. Zhu and P. Milanfar, "Image Reconstruction from Videos Distorted by Atmospheric Turbulence," SPIE Electronic Imaging, Conference 7543 on Visual Information Processing and Communication, 2010.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(352) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return