Citation: |
[1] |
R. Acar and C. R. Vogel, Analysis of total variation penalty methods, Inverse Prob., 10 (1994), 1217-1229.doi: 10.1088/0266-5611/10/6/003. |
[2] |
M. V. Afonso, J. Bioucas-Dias and M. A. T. Figueiredo, Fastimage recovery using variable splitting and constrained optimization, IEEE Trans. Image Process, 19 (2010), 2345-2356.doi: 10.1109/TIP.2010.2047910. |
[3] |
M. V. Afonso, J. Bioucas-Dias and M. A. T. Figueiredo, A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems, IEEE Trans. Image Process, 20 (2011), 681-695.doi: 10.1109/TIP.2010.2076294. |
[4] |
J. Barzilai and J. M. Borwein, Two point step size gradient method, IMA J. Numer. Anal., 8 (1988), 141-148.doi: 10.1093/imanum/8.1.141. |
[5] |
A. Beck and M. Teboulle, Fastgradient-based algorithms for constrained total variation image denoising and deblurring problmes, IEEE Trans. Image Process, 18 (2009), 2419-2434.doi: 10.1109/TIP.2009.2028250. |
[6] |
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202. |
[7] |
J. Bioucas-Dias and M. Figueiredo, A new TwIST: Two-step iterative thresholding algorithm for image restoration, IEEE Trans. Image Process, 16 (2007), 2992-3004.doi: 10.1109/TIP.2007.909319. |
[8] |
L. Bregman, The relaxation method of finding the common pointsof convex sets and its application to the solution of problems inconvex optimization, USSR Computational Mathematics andMathematical Physics, 7 (1967), 200-217. |
[9] |
E. Candès, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequence information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.doi: 10.1109/TIT.2005.862083. |
[10] |
A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188.doi: 10.1007/s002110050258. |
[11] |
A. Chambolle and T. Pock, A first-order primal-dualalgorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145.doi: 10.1007/s10851-010-0251-1. |
[12] |
T. F. Chan, S. Esedoglu, F. Park and A. Yip, "Recent Developments in Total Variation Image Restoration," TR05-01, CAM, UCLA, 2004. |
[13] |
R. H. Chan, J. Yang and X. Yuan, Alternating direction method for image inpainting in wavelet domain, SIAM J. Imaging Sci., 4 (2011), 807-826. |
[14] |
P. L. Combettes and V. Wajs, Signal recoverty by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200. |
[15] |
D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math., 56 (1996), 1181-1198.doi: 10.1137/S003613999427560X. |
[16] |
B. Dong, J. Li and Z. Shen, X-ray CTimage reconstruction via wavelet frame based regularization and Radon domain inpainting, J. Sci. Comput.. doi: 10.1007/s10915-012-9579-6. |
[17] |
D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.doi: 10.1109/TIT.2006.871582. |
[18] |
M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly and R. G. Baraniuk, Single Pixel Imaging via compressive sampling, IEEE Signal Processing Magazine, March 2008. |
[19] |
E. Esser, "Applications of Lagrangian-Based Alternatingdirection Methods and Connections to Split Bregman," TR09-31, CAM, UCLA, Los Angeles, CA, 2009. |
[20] |
E. Esser, X. Zhang and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), 1015-1046. |
[21] |
M. A. T. Figueiredo and R. Nowak, An EM algorithm for wavelet-basedimage restoration, IEEE Trans. Image Process, 12 (2003), 906-916.doi: 10.1109/TIP.2003.814255. |
[22] |
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comput. Math. Appl., 2 (1976), 17-40. |
[23] |
R. Glowinski and A. Marrocco, Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet nonlineaires, Rev. Francaise dAut. Inf. Rech. Oper., 2 (1975), 41-76. |
[24] |
T. Goldstein and S. Osher, The split Bregman method for$L_1$-Regularized Prolbems, SIAM J. Imaging Sci., 2 (2009), 323-343. |
[25] |
E. T. Hale, W. Yin and Y. Zhang, A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing, SIAM J. Optim, 19 (2008), 1107-1130.doi: 10.1137/070698920. |
[26] |
B. He, L. Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Program, 92 (2002), 103-118.doi: 10.1007/s101070100280. |
[27] |
M. R. Hestenes, Multiplier and gradient methods, J. Optim.Theory Appl., 4 (1969), 303-320. |
[28] |
C. Li, "An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixelcamera and Compressive Sensing," Master thesis, Rice University, 2009. |
[29] |
M. Defrise and C. De Mol, A note on wavelet-based inversion algorithms, Contemp. Math., 313 (2002), 85-96.doi: 10.1090/conm/313/05370. |
[30] |
M. J. D. Powell, A method for nonlinear constraints in minimization problems, in "Optimization" (ed. R. Fletcher), Academic Press, New York, 1969, 283-298. |
[31] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm, Phys. D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F. |
[32] |
S. Setzer, "Split Bregman Algorithm, Douglas-Rachford Splittingand Frame Shrinkage," Proc. 2nd International Conference on ScaleSpace Methods and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 2009. |
[33] |
J. L. Starck, M. Nguyen and F. Murtagh, Wavelets and curvelets forimage deconvolution: A combined approach, Signal Processing, 83 (2003), 2279-2283.doi: 10.1016/S0165-1684(03)00150-6. |
[34] |
A. Tikhonov and V. Arsenin, "Solution of Ill-Posed Problems," Winston, Washington, DC, 1977. |
[35] |
C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), 227-238.doi: 10.1137/0917016. |
[36] |
C. R. Vogel and M. E. Oman, A fast, robust total variation based reconstruction of noisy, blurred images, IEEE Trans. ImageProcess., 7 (1998), 813-824 |
[37] |
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.doi: 10.1137/080724265. |
[38] |
Y. Wang, J. Yang, W. Yin and Y. Zhang, A fast algorithm for edge-preserving variational multichannel image restoration, SIAM J. Imaging Sci., 2 (2009), 569-592.doi: 10.1137/080730421. |
[39] |
J. Yang, and Y. Zhang, Alternating direction algorithms forL1-problems in compressive sensing, SIAM J. Sci. Comput., 33 (2011), 250-278. |
[40] |
J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.doi: 10.1137/080732894. |
[41] |
Y. Zhang, "Theory of Compressive Sensing Via$l_1$-Minimization: A Non-RIP Analysis and Extensions," TR08-11, CAAM, Rice University, 2008. |