November  2012, 6(4): 663-679. doi: 10.3934/ipi.2012.6.663

Simultaneous determination of the diffusion and absorption coefficient from boundary data

1. 

Department of Mathematics, University of Würzburg, Germany

Received  June 2011 Revised  July 2012 Published  November 2012

We consider the inverse problem of determining both an unknown diffusion and an unknown absorption coefficient from knowledge of (partial) Cauchy data in an elliptic boundary value problem. For piecewise analytic coefficients, we prove a complete characterization of the reconstructible information. It is shown to consist of a combination of both coefficients together with the jumps in the leading order diffusion coefficient and its derivative.
Citation: Bastian Harrach. Simultaneous determination of the diffusion and absorption coefficient from boundary data. Inverse Problems and Imaging, 2012, 6 (4) : 663-679. doi: 10.3934/ipi.2012.6.663
References:
[1]

S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography, Opt. Lett., 23 (1998), 882-884. doi: 10.1364/OL.23.000882.

[2]

S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009), 123010. doi: 10.1088/0266-5611/25/12/123010.

[3]

K. Astala, J. Mueller, L. Päivärinta, A. Perämäki and S. Siltanen, Direct electrical impedance tomography for nonsmooth conductivities, Inverse Probl. Imaging, 5 (2011), 531-549. doi: 10.3934/ipi.2011.5.531.

[4]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265.

[5]

E. Beretta and E. Francini, Lipschitz stability for the electrical impedance tomography problem: the complex case, Comm. Partial Differential Equations, 36 (2011), 1723-1749. doi: 10.1080/03605302.2011.552930.

[6]

A. Bukhgeim, Recovering a potential from cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., 16 (2008), 19-33. doi: 10.1515/jiip.2008.002.

[7]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668. doi: 10.1081/PDE-120002868.

[8]

A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Application to Continuum Physics" (Rio de Janeiro, 1980) (eds. W. H. Meyer and M. A. Raupp), Soc. Brasil. Math., Rio de Janeiro, (1980), 65-73.

[9]

A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), 133-138.

[10]

J. Cheng and M. Yamamoto, Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case, SIAM J. Math. Anal., 35 (2004), 1371-1393. doi: 10.1137/S0036141003422497.

[11]

V. Druskin, The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-continuous conductivity, Earth Physics, 18 (1982).

[12]

V. Druskin, On uniqueness of the determination of the three-dimensional underground structures from surface measurements with variously positioned steady-state or monochromatic field sources, Sov. Phys.-Solid Earth, 21 (1985), 210-214.

[13]

V. Druskin, On the uniqueness of inverse problems from incomplete boundary data, SIAM J. Appl. Math., 58 (1998), 1591-1603. doi: 10.1137/S0036139996298292.

[14]

E. Francini, Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map, Inverse Problems, 16 (2000), 107-119. doi: 10.1088/0266-5611/16/1/309.

[15]

B. Gebauer, Localized potentials in electrical impedance tomography, Inverse Probl. Imaging, 2 (2008), 251-269. doi: 10.3934/ipi.2008.2.251.

[16]

B. Gebauer and N. Hyvönen, Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem, Inverse Probl. Imaging, 2 (2008), 355-372. doi: 10.3934/ipi.2008.2.355.

[17]

A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Phys. Med. Biol., 50 (2005), R1-R43. doi: 10.1088/0031-9155/50/4/R01.

[18]

A. Greenleaf, M. Lassas and G. Uhlmann, The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352. doi: 10.1002/cpa.10061.

[19]

A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-694.

[20]

N. I. Grinberg, Local uniqueness for the inverse boundaryproblem for the two-dimensional diffusion equation, European J. Appl. Math., 11 (2000), 473-489. doi: 10.1017/S0956792599004106.

[21]

B. Harrach, On uniqueness in diffuse optical tomography, Inverse Problems, 25 (2009), 055010, 14 pp.

[22]

B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518. doi: 10.1137/090773970.

[23]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc., 23 (2010), 655-691. doi: 10.1090/S0894-0347-10-00656-9.

[24]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, On determination of second order elliptic operators from partial Cauchy data, Proceedings National Academy of Sciences, 108 (2011), 467-472. doi: 10.1073/pnas.1011681107.

[25]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, Partial cauchy data for general second order elliptic operators in two dimensions, Publ. Research Insti. Math. Sci., to appear.

[26]

V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Appl. Math. Sci., 127, Springer, New York, 2006.

[27]

V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105. doi: 10.3934/ipi.2007.1.95.

[28]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math. (2), 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567.

[29]

K. Knudsen, The Calderón problem with partial data for less smooth conductivities, Comm. Partial Differential Equations, 31 (2006), 57-71. doi: 10.1080/03605300500361610.

[30]

R. Kohn, H. Shen, M. Vogelius and M. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Problems, 24 (2008), 015016, 21 pp. doi: 10.1088/0266-5611/24/1/015016.

[31]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302.

[32]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math., 38 (1985), 643-667. doi: 10.1002/cpa.3160380513.

[33]

J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications. I," Grundlehren Math. Wiss., 181, Springer-Verlag, Berlin Heidelberg New York, 1972.

[34]

C. Miranda, "Partial Differential Equations of Elliptic Type," Second revised edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. doi: 10.1007/978-3-642-87773-5.

[35]

A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2), 128 (1988), 531-576. doi: 10.2307/1971435.

[36]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. doi: 10.2307/2118653.

[37]

G. Nakamura, Z. Q. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388. doi: 10.1007/BF01460996.

[38]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169. doi: 10.2307/1971291.

[39]

G. Uhlmann, Commentary on Calderón's paper (29), on an inverse boundary value problem, in "Selected papers of Alberto P. Calderón," Amer. Math. Soc., Providence, RI, (2008), 623-636.

show all references

References:
[1]

S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography, Opt. Lett., 23 (1998), 882-884. doi: 10.1364/OL.23.000882.

[2]

S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009), 123010. doi: 10.1088/0266-5611/25/12/123010.

[3]

K. Astala, J. Mueller, L. Päivärinta, A. Perämäki and S. Siltanen, Direct electrical impedance tomography for nonsmooth conductivities, Inverse Probl. Imaging, 5 (2011), 531-549. doi: 10.3934/ipi.2011.5.531.

[4]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265.

[5]

E. Beretta and E. Francini, Lipschitz stability for the electrical impedance tomography problem: the complex case, Comm. Partial Differential Equations, 36 (2011), 1723-1749. doi: 10.1080/03605302.2011.552930.

[6]

A. Bukhgeim, Recovering a potential from cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., 16 (2008), 19-33. doi: 10.1515/jiip.2008.002.

[7]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668. doi: 10.1081/PDE-120002868.

[8]

A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Application to Continuum Physics" (Rio de Janeiro, 1980) (eds. W. H. Meyer and M. A. Raupp), Soc. Brasil. Math., Rio de Janeiro, (1980), 65-73.

[9]

A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), 133-138.

[10]

J. Cheng and M. Yamamoto, Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case, SIAM J. Math. Anal., 35 (2004), 1371-1393. doi: 10.1137/S0036141003422497.

[11]

V. Druskin, The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-continuous conductivity, Earth Physics, 18 (1982).

[12]

V. Druskin, On uniqueness of the determination of the three-dimensional underground structures from surface measurements with variously positioned steady-state or monochromatic field sources, Sov. Phys.-Solid Earth, 21 (1985), 210-214.

[13]

V. Druskin, On the uniqueness of inverse problems from incomplete boundary data, SIAM J. Appl. Math., 58 (1998), 1591-1603. doi: 10.1137/S0036139996298292.

[14]

E. Francini, Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map, Inverse Problems, 16 (2000), 107-119. doi: 10.1088/0266-5611/16/1/309.

[15]

B. Gebauer, Localized potentials in electrical impedance tomography, Inverse Probl. Imaging, 2 (2008), 251-269. doi: 10.3934/ipi.2008.2.251.

[16]

B. Gebauer and N. Hyvönen, Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem, Inverse Probl. Imaging, 2 (2008), 355-372. doi: 10.3934/ipi.2008.2.355.

[17]

A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Phys. Med. Biol., 50 (2005), R1-R43. doi: 10.1088/0031-9155/50/4/R01.

[18]

A. Greenleaf, M. Lassas and G. Uhlmann, The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction, Comm. Pure Appl. Math., 56 (2003), 328-352. doi: 10.1002/cpa.10061.

[19]

A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-694.

[20]

N. I. Grinberg, Local uniqueness for the inverse boundaryproblem for the two-dimensional diffusion equation, European J. Appl. Math., 11 (2000), 473-489. doi: 10.1017/S0956792599004106.

[21]

B. Harrach, On uniqueness in diffuse optical tomography, Inverse Problems, 25 (2009), 055010, 14 pp.

[22]

B. Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518. doi: 10.1137/090773970.

[23]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc., 23 (2010), 655-691. doi: 10.1090/S0894-0347-10-00656-9.

[24]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, On determination of second order elliptic operators from partial Cauchy data, Proceedings National Academy of Sciences, 108 (2011), 467-472. doi: 10.1073/pnas.1011681107.

[25]

O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto, Partial cauchy data for general second order elliptic operators in two dimensions, Publ. Research Insti. Math. Sci., to appear.

[26]

V. Isakov, "Inverse Problems for Partial Differential Equations," Second edition, Appl. Math. Sci., 127, Springer, New York, 2006.

[27]

V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105. doi: 10.3934/ipi.2007.1.95.

[28]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math. (2), 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567.

[29]

K. Knudsen, The Calderón problem with partial data for less smooth conductivities, Comm. Partial Differential Equations, 31 (2006), 57-71. doi: 10.1080/03605300500361610.

[30]

R. Kohn, H. Shen, M. Vogelius and M. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Problems, 24 (2008), 015016, 21 pp. doi: 10.1088/0266-5611/24/1/015016.

[31]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302.

[32]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math., 38 (1985), 643-667. doi: 10.1002/cpa.3160380513.

[33]

J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications. I," Grundlehren Math. Wiss., 181, Springer-Verlag, Berlin Heidelberg New York, 1972.

[34]

C. Miranda, "Partial Differential Equations of Elliptic Type," Second revised edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. doi: 10.1007/978-3-642-87773-5.

[35]

A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math. (2), 128 (1988), 531-576. doi: 10.2307/1971435.

[36]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. doi: 10.2307/2118653.

[37]

G. Nakamura, Z. Q. Sun and G. Uhlmann, Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., 303 (1995), 377-388. doi: 10.1007/BF01460996.

[38]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169. doi: 10.2307/1971291.

[39]

G. Uhlmann, Commentary on Calderón's paper (29), on an inverse boundary value problem, in "Selected papers of Alberto P. Calderón," Amer. Math. Soc., Providence, RI, (2008), 623-636.

[1]

Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations and Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032

[2]

Xiaoping Fang, Youjun Deng, Wing-Yan Tsui, Zaiyun Zhang. On simultaneous recovery of sources/obstacles and surrounding mediums by boundary measurements. Electronic Research Archive, 2020, 28 (3) : 1239-1255. doi: 10.3934/era.2020068

[3]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems and Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[4]

Guanghui Hu, Yavar Kian. Determination of singular time-dependent coefficients for wave equations from full and partial data. Inverse Problems and Imaging, 2018, 12 (3) : 745-772. doi: 10.3934/ipi.2018032

[5]

Barbara Kaltenbacher, William Rundell. On the simultaneous recovery of the conductivity and the nonlinear reaction term in a parabolic equation. Inverse Problems and Imaging, 2020, 14 (5) : 939-966. doi: 10.3934/ipi.2020043

[6]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, 2021, 29 (5) : 3081-3096. doi: 10.3934/era.2021027

[7]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[8]

Julien Barral, Yan-Hui Qu. Localized asymptotic behavior for almost additive potentials. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 717-751. doi: 10.3934/dcds.2012.32.717

[9]

Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737

[10]

Jijun Liu, Gen Nakamura. Recovering the boundary corrosion from electrical potential distribution using partial boundary data. Inverse Problems and Imaging, 2017, 11 (3) : 521-538. doi: 10.3934/ipi.2017024

[11]

Lingchen Kong, Naihua Xiu, Guokai Liu. Partial $S$-goodness for partially sparse signal recovery. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 25-38. doi: 10.3934/naco.2014.4.25

[12]

Amin Boumenir, Vu Kim Tuan. Recovery of the heat coefficient by two measurements. Inverse Problems and Imaging, 2011, 5 (4) : 775-791. doi: 10.3934/ipi.2011.5.775

[13]

Vinicius Albani, Uri M. Ascher, Xu Yang, Jorge P. Zubelli. Data driven recovery of local volatility surfaces. Inverse Problems and Imaging, 2017, 11 (5) : 799-823. doi: 10.3934/ipi.2017038

[14]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[15]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[16]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems and Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[17]

Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems and Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036

[18]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems and Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[19]

Mourad Bellassoued, Chaima Moufid. Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2671-2692. doi: 10.3934/dcdss.2020394

[20]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems and Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]