November  2012, 6(4): 709-747. doi: 10.3934/ipi.2012.6.709

Sampling type methods for an inverse waveguide problem

1. 

Department of Mathematics, University of Delaware, Newark, DE 19716

2. 

Departamento de Matemáticas, Escuela Politécnica de Ingeniería de Gijón, Universidad de Oviedo, 33203 Gijón, Spain

Received  November 2011 Revised  August 2012 Published  November 2012

We consider the problem of locating a penetrable obstacle in an acoustic waveguide from measurements of pressure waves due to point sources inside the waveguide. More precisely, we assume that we are given the scattered field and its normal derivative for any source point and receiver placed on a pair of surfaces known as the source and the measurement surfaces, respectively. A novel feature of this work is that the obstacle is allowed to touch the boundary of the pipe.
    We first analyze the associated interior transmission problem. Then, we adapt and analyze the Reciprocity Gap Method (RGM) and the Linear Sampling Method (LSM) to deal with the inverse problem. We also study the relationship between these two methods and provide numerical results.
Citation: Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709
References:
[1]

T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering in a 3D homogeneous planar waveguide, SIAM J. Appl. Math., 71 (2011), 753-772. doi: 10.1137/100806333.

[2]

T. Arens, D. Gintides and A. Lechleiter, Variational formulations for scattering in a three-dimensional acoustic waveguide, Math. Meth. Appl. Sci., 31 (2007), 821-847. doi: 10.1002/mma.947.

[3]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation, Inv. Prob., 24 (2008), 015018, 20 pp.

[4]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory. An Introduction," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.

[5]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inv. Prob., 22 (2006), 845-867. doi: 10.1088/0266-5611/22/3/007.

[6]

F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media, in "Mathematical and Numerical Aspects of Wave Propagation -WAVES 2003" (eds. Cohen et al.), Springer, (2003), 613-618.

[7]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inv. Prob., 21 (2005), 383-398. doi: 10.1088/0266-5611/21/1/023.

[8]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inv. Prob., 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.

[9]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.

[10]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inv. Prob., 13 (1997), 1477-1493. doi: 10.1088/0266-5611/13/6/005.

[11]

K. Horoshenkov, R. Ashley and J. Blanksby, Determination of sewer roughness and sediment properties using acoustic techniques, Water Science and Technology, 47 (2003), 87-93.

[12]

P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem, Inverse Problems and Imaging, 5 (2011), 465-483.

[13]

B. Pincon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors, Inv. Prob., 23 (2007), 1-25.

[14]

F. Podd, M. Ali, K. Horoshenkov, A. Wood, S. Tait, J. Boot, R. Long and A. Saul, Rapid sonic characterisation of sewer change and obstructions, Water Science and Technology, 56 (2007), 131-139.

[15]

P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing, J. Acoust. Soc. Am., 107 (2000), 2418-2429. doi: 10.1121/1.428628.

[16]

P. Roux, B. Roman and M. Fink, Time-reversal in an ultrasonic waveguide, Appl. Phys. Lett., 70 (1997), 1811-1813.

[17]

A. Tolstoy, K. Horoshenkov and M. Bin Ali, Detecting pipe changes via acoustic matched field processing, Applied Acoustics, 70 (2009), 695-702. doi: 10.1016/j.apacoust.2008.08.007.

[18]

Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging, Inv. Prob., 16 (2000), 1761-1776. doi: 10.1088/0266-5611/16/6/311.

show all references

References:
[1]

T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering in a 3D homogeneous planar waveguide, SIAM J. Appl. Math., 71 (2011), 753-772. doi: 10.1137/100806333.

[2]

T. Arens, D. Gintides and A. Lechleiter, Variational formulations for scattering in a three-dimensional acoustic waveguide, Math. Meth. Appl. Sci., 31 (2007), 821-847. doi: 10.1002/mma.947.

[3]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation, Inv. Prob., 24 (2008), 015018, 20 pp.

[4]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory. An Introduction," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.

[5]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inv. Prob., 22 (2006), 845-867. doi: 10.1088/0266-5611/22/3/007.

[6]

F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media, in "Mathematical and Numerical Aspects of Wave Propagation -WAVES 2003" (eds. Cohen et al.), Springer, (2003), 613-618.

[7]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inv. Prob., 21 (2005), 383-398. doi: 10.1088/0266-5611/21/1/023.

[8]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inv. Prob., 12 (1996), 383-393. doi: 10.1088/0266-5611/12/4/003.

[9]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.

[10]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inv. Prob., 13 (1997), 1477-1493. doi: 10.1088/0266-5611/13/6/005.

[11]

K. Horoshenkov, R. Ashley and J. Blanksby, Determination of sewer roughness and sediment properties using acoustic techniques, Water Science and Technology, 47 (2003), 87-93.

[12]

P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem, Inverse Problems and Imaging, 5 (2011), 465-483.

[13]

B. Pincon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors, Inv. Prob., 23 (2007), 1-25.

[14]

F. Podd, M. Ali, K. Horoshenkov, A. Wood, S. Tait, J. Boot, R. Long and A. Saul, Rapid sonic characterisation of sewer change and obstructions, Water Science and Technology, 56 (2007), 131-139.

[15]

P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing, J. Acoust. Soc. Am., 107 (2000), 2418-2429. doi: 10.1121/1.428628.

[16]

P. Roux, B. Roman and M. Fink, Time-reversal in an ultrasonic waveguide, Appl. Phys. Lett., 70 (1997), 1811-1813.

[17]

A. Tolstoy, K. Horoshenkov and M. Bin Ali, Detecting pipe changes via acoustic matched field processing, Applied Acoustics, 70 (2009), 695-702. doi: 10.1016/j.apacoust.2008.08.007.

[18]

Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging, Inv. Prob., 16 (2000), 1761-1776. doi: 10.1088/0266-5611/16/6/311.

[1]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[2]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems and Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[3]

Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems and Imaging, 2021, 15 (4) : 745-762. doi: 10.3934/ipi.2021012

[4]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[5]

Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems and Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024

[6]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[7]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems and Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[8]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, 2022, 16 (4) : 997-1017. doi: 10.3934/ipi.2022009

[9]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[10]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[11]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[12]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[13]

Laurent Bourgeois, Arnaud Recoquillay. The Linear Sampling Method for Kirchhoff-Love infinite plates. Inverse Problems and Imaging, 2020, 14 (2) : 363-384. doi: 10.3934/ipi.2020016

[14]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[15]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[16]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[17]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[18]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[19]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems and Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[20]

Pedro Serranho. A hybrid method for inverse scattering for Sound-soft obstacles in R3. Inverse Problems and Imaging, 2007, 1 (4) : 691-712. doi: 10.3934/ipi.2007.1.691

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]