November  2012, 6(4): 709-747. doi: 10.3934/ipi.2012.6.709

Sampling type methods for an inverse waveguide problem

1. 

Department of Mathematics, University of Delaware, Newark, DE 19716

2. 

Departamento de Matemáticas, Escuela Politécnica de Ingeniería de Gijón, Universidad de Oviedo, 33203 Gijón, Spain

Received  November 2011 Revised  August 2012 Published  November 2012

We consider the problem of locating a penetrable obstacle in an acoustic waveguide from measurements of pressure waves due to point sources inside the waveguide. More precisely, we assume that we are given the scattered field and its normal derivative for any source point and receiver placed on a pair of surfaces known as the source and the measurement surfaces, respectively. A novel feature of this work is that the obstacle is allowed to touch the boundary of the pipe.
    We first analyze the associated interior transmission problem. Then, we adapt and analyze the Reciprocity Gap Method (RGM) and the Linear Sampling Method (LSM) to deal with the inverse problem. We also study the relationship between these two methods and provide numerical results.
Citation: Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709
References:
[1]

T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering in a 3D homogeneous planar waveguide,, SIAM J. Appl. Math., 71 (2011), 753.  doi: 10.1137/100806333.  Google Scholar

[2]

T. Arens, D. Gintides and A. Lechleiter, Variational formulations for scattering in a three-dimensional acoustic waveguide,, Math. Meth. Appl. Sci., 31 (2007), 821.  doi: 10.1002/mma.947.  Google Scholar

[3]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation,, Inv. Prob., 24 (2008).   Google Scholar

[4]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory. An Introduction,", Interaction of Mechanics and Mathematics, (2006).   Google Scholar

[5]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects,, Inv. Prob., 22 (2006), 845.  doi: 10.1088/0266-5611/22/3/007.  Google Scholar

[6]

F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media,, in, (2003), 613.   Google Scholar

[7]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inv. Prob., 21 (2005), 383.  doi: 10.1088/0266-5611/21/1/023.  Google Scholar

[8]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inv. Prob., 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[9]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem,, Inverse Problems and Imaging, 1 (2007), 13.   Google Scholar

[10]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inv. Prob., 13 (1997), 1477.  doi: 10.1088/0266-5611/13/6/005.  Google Scholar

[11]

K. Horoshenkov, R. Ashley and J. Blanksby, Determination of sewer roughness and sediment properties using acoustic techniques,, Water Science and Technology, 47 (2003), 87.   Google Scholar

[12]

P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem,, Inverse Problems and Imaging, 5 (2011), 465.   Google Scholar

[13]

B. Pincon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors,, Inv. Prob., 23 (2007), 1.   Google Scholar

[14]

F. Podd, M. Ali, K. Horoshenkov, A. Wood, S. Tait, J. Boot, R. Long and A. Saul, Rapid sonic characterisation of sewer change and obstructions,, Water Science and Technology, 56 (2007), 131.   Google Scholar

[15]

P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing,, J. Acoust. Soc. Am., 107 (2000), 2418.  doi: 10.1121/1.428628.  Google Scholar

[16]

P. Roux, B. Roman and M. Fink, Time-reversal in an ultrasonic waveguide,, Appl. Phys. Lett., 70 (1997), 1811.   Google Scholar

[17]

A. Tolstoy, K. Horoshenkov and M. Bin Ali, Detecting pipe changes via acoustic matched field processing,, Applied Acoustics, 70 (2009), 695.  doi: 10.1016/j.apacoust.2008.08.007.  Google Scholar

[18]

Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging,, Inv. Prob., 16 (2000), 1761.  doi: 10.1088/0266-5611/16/6/311.  Google Scholar

show all references

References:
[1]

T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering in a 3D homogeneous planar waveguide,, SIAM J. Appl. Math., 71 (2011), 753.  doi: 10.1137/100806333.  Google Scholar

[2]

T. Arens, D. Gintides and A. Lechleiter, Variational formulations for scattering in a three-dimensional acoustic waveguide,, Math. Meth. Appl. Sci., 31 (2007), 821.  doi: 10.1002/mma.947.  Google Scholar

[3]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation,, Inv. Prob., 24 (2008).   Google Scholar

[4]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory. An Introduction,", Interaction of Mechanics and Mathematics, (2006).   Google Scholar

[5]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects,, Inv. Prob., 22 (2006), 845.  doi: 10.1088/0266-5611/22/3/007.  Google Scholar

[6]

F. Cakoni and H. Haddar, Interior transmission problem for anisotropic media,, in, (2003), 613.   Google Scholar

[7]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inv. Prob., 21 (2005), 383.  doi: 10.1088/0266-5611/21/1/023.  Google Scholar

[8]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inv. Prob., 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[9]

D. Colton, L. Päivärinta and J. Sylvester, The interior transmission problem,, Inverse Problems and Imaging, 1 (2007), 13.   Google Scholar

[10]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inv. Prob., 13 (1997), 1477.  doi: 10.1088/0266-5611/13/6/005.  Google Scholar

[11]

K. Horoshenkov, R. Ashley and J. Blanksby, Determination of sewer roughness and sediment properties using acoustic techniques,, Water Science and Technology, 47 (2003), 87.   Google Scholar

[12]

P. Monk and V. Selgas, Near field sampling type methods for the inverse fluid-solid interaction problem,, Inverse Problems and Imaging, 5 (2011), 465.   Google Scholar

[13]

B. Pincon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors,, Inv. Prob., 23 (2007), 1.   Google Scholar

[14]

F. Podd, M. Ali, K. Horoshenkov, A. Wood, S. Tait, J. Boot, R. Long and A. Saul, Rapid sonic characterisation of sewer change and obstructions,, Water Science and Technology, 56 (2007), 131.   Google Scholar

[15]

P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing,, J. Acoust. Soc. Am., 107 (2000), 2418.  doi: 10.1121/1.428628.  Google Scholar

[16]

P. Roux, B. Roman and M. Fink, Time-reversal in an ultrasonic waveguide,, Appl. Phys. Lett., 70 (1997), 1811.   Google Scholar

[17]

A. Tolstoy, K. Horoshenkov and M. Bin Ali, Detecting pipe changes via acoustic matched field processing,, Applied Acoustics, 70 (2009), 695.  doi: 10.1016/j.apacoust.2008.08.007.  Google Scholar

[18]

Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging,, Inv. Prob., 16 (2000), 1761.  doi: 10.1088/0266-5611/16/6/311.  Google Scholar

[1]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[2]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[4]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[5]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[6]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[7]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[8]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[11]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[16]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[20]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]