Citation: |
[1] |
C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro and J. Verdera, Filling-in by joint interpolation of vector fields and gray levels, Image Processing, IEEE Transactions on, 10 (2001), 1200-1211.doi: 10.1109/83.935036. |
[2] |
J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148.doi: 10.1093/imanum/8.1.141. |
[3] |
M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, In "SIGGRAPH," page 417-424, (2000).doi: 10.1145/344779.344972. |
[4] |
M. Bertalmio, L. Vese, G. Sapiro and S. Osher, Simultaneous structure and texture image inpainting, IEEE Trans. Image Process., 12 (2003), 882-889. |
[5] |
D. Bertsekas, "Parallel and Distributed Computation," Prentice Hall, 1989. |
[6] |
M. Burger, L. He and C.-B. Schönlieb, Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imag. Sci., 2 (2009), 1129-1167.doi: 10.1137/080728548. |
[7] |
J.-F. Cai, R. Chan and Z. Shen, A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24 (2008), 131-149.doi: 10.1016/j.acha.2007.10.002. |
[8] |
J.-F. Cai, H. Ji, F. Shang and Z. Shen, Inpainting for compressed images, Appl. Comput. Harmon. Anal., 29 (2010), 368-381.doi: 10.1016/j.acha.2010.01.005. |
[9] |
A. Chambolle, An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis. J. Math. Imaging Vis., 20 (2004), 89-97.doi: 10.1023/B:JMIV.0000011321.19549.88. |
[10] |
A. Chambolle, V. Caselles, M. Novaga, D. Cremers and T. Pock, "An Introduction to Total Variation for Image Analysis," Technical Report, 2009. |
[11] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145.doi: 10.1007/s10851-010-0251-1. |
[12] |
R. Chan, Y. Wen and A. Yip, A fast optimization transfer algorithm for image inpainting in wavelet domains, IEEE Trans. Image Process., 18 (2009), 1467-1476.doi: 10.1109/TIP.2009.2019806. |
[13] |
R. Chan, Y. Wen and A. Yip, A primal-dual method for total variation-based wavelet domain inpainting, IEEE Trans. Image Process, 21 (2012), 106-114.doi: 10.1109/TIP.2011.2159983. |
[14] |
R. H. Chan, J. Yang and X. Yuan, Alternating direction method for image inpainting in wavelet domains, SIAM J. Imag. Sci., 4 (2012), 807-826.doi: 10.1137/100807247. |
[15] |
T. Chan, S. Kang and J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63 (2002), 564-592.doi: 10.1137/S0036139901390088. |
[16] |
T. Chan, S. Osher and J. Shen, The digital TV filter and nonlinear denoising, IEEE Trans. Image Process., 10 (2001), 231-241.doi: 10.1109/83.902288. |
[17] |
T. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math., 62 (2002), 1019-1043.doi: 10.1137/S0036139900368844. |
[18] |
T. Chan, J. Shen and H. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vis., 25 (2006), 107-125.doi: 10.1007/s10851-006-5257-3. |
[19] |
T. F. Chan, G. H. Golub and P. Mulet, A nonlinear primal-dual method for total variationbased image restoration, SIAM J. Optim., 20 (1999), 1964-1977.doi: 10.1137/S1064827596299767. |
[20] |
Y. Chen, W. W. Hager, F. Huang, D. T. Phan, X. Ye and W. Yin, Fast algorithms for image reconstruction with application to partially parallel MR imaging, SIAM J. Imag. Sci., 5 (2012), 90-118.doi: 10.1137/100792688. |
[21] |
J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.doi: 10.1007/BF01581204. |
[22] |
A. Efros and T. Leung, Texture synthesis by non-parametric sampling, In "Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on," 2 (1999), 1033-1038.doi: 10.1109/ICCV.1999.790383. |
[23] |
S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, European J. Appl. Math., 13 (2002), 353-370.doi: 10.1017/S0956792502004904. |
[24] |
E. Esser, X. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for tv minimization, SIAM J. Imag. Sci., 3 (2010), 1015-1046.doi: 10.1137/09076934X. |
[25] |
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comput. Math. Appl., 2 (1976), 17-40.doi: 10.1016/0898-1221(76)90003-1. |
[26] |
R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un, et la résolution par pénalisation-dualité d'une classe de problèmes de dirichlet nonlinéaires, RAIRO Analyse Numérique, 9 (1975), 41-76. |
[27] |
T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.doi: 10.1137/080725891. |
[28] |
B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective, SIAM J. Imag. Sci., 5 (2011), 119-149.doi: 10.1137/100814494. |
[29] |
B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Francaise Inform. Rech. Oper. Ser. R-3, 4 (1970), 154-158. |
[30] |
S. Masnou and J.-M. Morel, Level lines based discocclusion, In "Proc. of Intl. Conf. Imag. Proc.," (1998).doi: 10.1109/ICIP.1998.999016. |
[31] |
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), 460-489.doi: 10.1137/040605412. |
[32] |
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control, 14 (1976), 877-898.doi: 10.1137/0314056. |
[33] |
L. Rudin, S. Osher and E. Fatemi, Non-linear total variation noise removal algorithm, Physics D., 60 (1992), 259-268. |
[34] |
C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), 227-238.doi: 10.1137/0917016. |
[35] |
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imag. Sci., 1 (2008), 248-272.doi: 10.1137/080724265. |
[36] |
C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imag. Sci., 3 (2010), 300-339.doi: 10.1137/090767558. |
[37] |
J. Yang, Y. Zhang and W. Yin, A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, Special Issue on Compressed Sensing, 4 (2010), 288-297. |
[38] |
X. Ye, Y. Chen and F. Huang, Computational acceleration for MR image reconstruction in partially parallel imaging, IEEE Trans. Med. Imag., 30 (2011), 1055-1063. |
[39] |
X. Ye, Y. Chen, W. Lin and F. Huang, Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories, IEEE Trans. Med. Imag., 30 (2011), 575-585. |
[40] |
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imag. Sci., 3 (2010), 253-276.doi: 10.1137/090746379. |
[41] |
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on bregman iteration, J. Sci. Comput., 46 (2011), 20-46.doi: 10.1007/s10915-010-9408-8. |
[42] |
X. Zhang and T. Chan, Wavelet inpainting by nonlocal total variation, Inverse Probl. Imag., 4 (2010), 191-210.doi: 10.3934/ipi.2010.4.191. |
[43] |
M. Zhu and T. Chan, "An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration," Technical Report 08-34, CAM UCLA, 2008. |