November  2013, 7(4): 1115-1122. doi: 10.3934/ipi.2013.7.1115

Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials

1. 

Laboratoire de Mathématiques de Reims, EA 4535 and FR CNRS 3399, Université de Reims Champagne-Ardenne, BP 1039, 51687 REIMS Cedex 2, France

2. 

Institut Elie Cartan de Lorraine, UMR CNRS 7502, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1, France

Received  October 2012 Revised  June 2013 Published  November 2013

We consider the AKNS (Ablowitz-Kaup-Newell-Segur) operator on the unit interval with potentials belonging to Sobolev spaces in the framework of inverse spectral theory. Precise sets of eigenvalues are given in order that they, together with the knowledge of the potentials on the side $(a,1)$ and partial informations on the potential on $(a-\varepsilon,a)$ for some arbitrary small $\varepsilon>0$, determine the potentials entirely on $(0,1)$. Naturally, the smaller is $a$ and the more partial informations are known, the less is the number of the needed eigenvalues.
Citation: Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems and Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115
References:
[1]

L. Amour, Inverse spectral theory for the AKNS system with separated boundary conditions, Inv. Problems, 5 (1993), 507-523. doi: 10.1088/0266-5611/9/5/001.

[2]

L. Amour, The coordinates system $\kappa \times \mu$ on $L^2(0,1) \times L^2(0,1) $for the AKNS operators on the unit interval, Preprint Hal 00526898.

[3]

L. Amour and J. Faupin, Inverse spectral results for Schrödinger operators in Sobolev spaces, Int. Math. Res. Notes, 22 (2010), 4319-4333. doi: 10.1093/imrn/rnq040.

[4]

L. Amour, J. Faupin and T. Raoux, Inverse spectral results for Schrödinger operators on the unit interval with partial informations given on the potentials, Journal of Mathematical Physics, 50 (2009), 033505. doi: 10.1063/1.3087426.

[5]

R. del Rio, F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Int. Math. Res. Notices, 15 (1997), 751-758. doi: 10.1155/S1073792897000494.

[6]

R. del Rio, F. Gesztesy and B. Simon, Corrections and addendum to Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Int. Math. Res. Notices, 11 (1999), 623-625. doi: 10.1155/S107379289900032X.

[7]

R. del Rio and B. Grébert, Inverse spectral results for the AKNS systems with partial information on the potentials, Math. Phys. Anal. Geom., 4 (2001), 229-244. doi: 10.1023/A:1012981630059.

[8]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum, Trans. Amer. Math. Soc., 352 (2000), 2765-2787. doi: 10.1090/S0002-9947-99-02544-1.

[9]

O. H. Hald, Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc., 62 (1980), 41-48.

[10]

H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680. doi: 10.1137/0134054.

[11]

B. J. Levin, Distribution of Zeros of Entire Functions, Trans. math. Mon. AMS, vol. 5, Springer-Verlag, Providence, R.I., 1964.

[12]

B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht 1991.

[13]

F. Sérier, Inverse spectral problem for singular Ablowitz-Kaup-Newell-Segur operators, Inverse Problems, 22 (2006), 1457-1484. doi: 10.1088/0266-5611/22/4/018.

show all references

References:
[1]

L. Amour, Inverse spectral theory for the AKNS system with separated boundary conditions, Inv. Problems, 5 (1993), 507-523. doi: 10.1088/0266-5611/9/5/001.

[2]

L. Amour, The coordinates system $\kappa \times \mu$ on $L^2(0,1) \times L^2(0,1) $for the AKNS operators on the unit interval, Preprint Hal 00526898.

[3]

L. Amour and J. Faupin, Inverse spectral results for Schrödinger operators in Sobolev spaces, Int. Math. Res. Notes, 22 (2010), 4319-4333. doi: 10.1093/imrn/rnq040.

[4]

L. Amour, J. Faupin and T. Raoux, Inverse spectral results for Schrödinger operators on the unit interval with partial informations given on the potentials, Journal of Mathematical Physics, 50 (2009), 033505. doi: 10.1063/1.3087426.

[5]

R. del Rio, F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Int. Math. Res. Notices, 15 (1997), 751-758. doi: 10.1155/S1073792897000494.

[6]

R. del Rio, F. Gesztesy and B. Simon, Corrections and addendum to Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Int. Math. Res. Notices, 11 (1999), 623-625. doi: 10.1155/S107379289900032X.

[7]

R. del Rio and B. Grébert, Inverse spectral results for the AKNS systems with partial information on the potentials, Math. Phys. Anal. Geom., 4 (2001), 229-244. doi: 10.1023/A:1012981630059.

[8]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum, Trans. Amer. Math. Soc., 352 (2000), 2765-2787. doi: 10.1090/S0002-9947-99-02544-1.

[9]

O. H. Hald, Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc., 62 (1980), 41-48.

[10]

H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680. doi: 10.1137/0134054.

[11]

B. J. Levin, Distribution of Zeros of Entire Functions, Trans. math. Mon. AMS, vol. 5, Springer-Verlag, Providence, R.I., 1964.

[12]

B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht 1991.

[13]

F. Sérier, Inverse spectral problem for singular Ablowitz-Kaup-Newell-Segur operators, Inverse Problems, 22 (2006), 1457-1484. doi: 10.1088/0266-5611/22/4/018.

[1]

J. Douglas Wright. On the spectrum of the superposition of separated potentials.. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 273-281. doi: 10.3934/dcdsb.2013.18.273

[2]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems and Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[3]

Cornelis van der Mee. Direct scattering of AKNS systems with $L^2$ potentials. Conference Publications, 2015, 2015 (special) : 1089-1097. doi: 10.3934/proc.2015.1089

[4]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[5]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[6]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[7]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[8]

Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091

[9]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[10]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[11]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[12]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure and Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[13]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[14]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[15]

Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029

[16]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems and Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[17]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[18]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[19]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[20]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]