• Previous Article
    Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions
  • IPI Home
  • This Issue
  • Next Article
    Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials
November  2013, 7(4): 1123-1138. doi: 10.3934/ipi.2013.7.1123

The factorization method applied to cracks with impedance boundary conditions

1. 

INRIA Saclay Ile de France/Ecole Polytechnique, CMAP, Route de Saclay, 91128 Palaiseau Cedex, France

2. 

INRIA Saclay Ile de France / CMAP Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex

Received  August 2012 Revised  June 2013 Published  November 2013

We use the Factorization method to retrieve the shape of cracks with impedance boundary conditions from farfields associated with incident plane waves at a fixed frequency. This work is an extension of the study initiated by Kirsch and Ritter [Inverse Problems, 16, pp. 89-105, 2000] where the case of sound soft cracks is considered. We address here the scalar problem and provide theoretical validation of the method when the impedance boundary conditions hold on both sides of the crack. We then deduce an inversion algorithm and present some validating numerical results in the case of simply and multiply connected cracks.
Citation: Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems and Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proceedings of the American Mathematical Society, 133 (2005), 1685-1691, (electronic). doi: 10.1090/S0002-9939-05-07810-X.

[2]

H. Ammari, J. Garnier, H. Kang, W. K. Park and K. Solna, Imaging schemes for perfectly conducting cracks, SIAM, J. Appl. Math., 71 (2011), 68-91. doi: 10.1137/100800130.

[3]

A. Ben Abda, F. Delbary and H. Haddar, On the use of the reciprocity-gap functional in inverse scattering from planar cracks, Math. Models Methods Appl. Sci.,15 (2005), 1553-1574. doi: 10.1142/S0218202505000819.

[4]

F. Ben Hassen, Y. Boukari and H. Haddar, Application of the linear sampling method to retrieve cracks with impedance boundary conditions, Inverse Problems in Science and Engineering, 2012. doi: 10.1080/17415977.2012.686997.

[5]

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems, Eng. Anal. Bound. Elem. 35 (2011), 223-235. doi: 10.1016/j.enganabound.2010.08.007.

[6]

M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements, M2AN Math. Model. Numer. Anal. 35 (2001), 595-605. doi: 10.1051/m2an:2001128.

[7]

K. Bryan and M. S. Vogelius, A review of selected works on crack identification, in Geometric Methods in Inverse Problems and PDE Control (Springer, New York), MA Vol. 137, Math. Appl., 2004, 25-46. doi: 10.1007/978-1-4684-9375-7_3.

[8]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, 2006.

[9]

F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Problems, 19 (2003), 279-295. doi: 10.1088/0266-5611/19/2/303.

[10]

N. Zeev and F. Cakoni, The identification of thin dielectric objects from far field or near field scattering data, SIAM J. Appl. Math., 69 (2009), 1024-1042. doi: 10.1137/070711542.

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, second edition, Heidelberg: Springer, 1998.

[12]

D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math., 200 (2007), 21-31. doi: 10.1016/j.cam.2005.12.004.

[13]

T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern, IMA Journal of Applied Mathematics, 72 (2007), 96-112. doi: 10.1093/imamat/hxl026.

[14]

O. Ivanyshyn and R. Kress, Inverse scattering for planar cracks via nonlinear integral equations, Math. Methods Appl. Sci., 31 (2008), 1221-1232. doi: 10.1002/mma.970.

[15]

N. Grinberg and A. Kirsch, The linear sampling method in inverse obstacle scattering for impedance boundary conditions, J. Inverse Ill-Posed Probl., 10 (2002), 171-185. doi: 10.1515/jiip.2002.10.2.171.

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture in Mathematics and Its Applications 36, (2008).

[17]

A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc, Inverse Problems, 16 (2000), 89-105. doi: 10.1088/0266-5611/16/1/308.

[18]

R. Kress and P. Serranho, A hybrid method for two-dimensional crack reconstruction, Inverse Problems, 21 (2005), 773-784. doi: 10.1088/0266-5611/21/2/020.

[19]

J. J. Liu, P. A. Krutitskii and M. Sini, Numerical solution of the scattering problem for acoustic waves by a two-sided crack in 2-dimensional space, J. Comput. Math., 29 (2011), 141-166. doi: 10.4208/jams.012111.012811a.

[20]

A. Lechleiter, The factorization method is independent of transmission eigenvalues, Inverse Probl. Imaging, 3 (2009), 123-138. doi: 10.3934/ipi.2009.3.123.

[21]

J. Liu and M. Sini, Reconstruction of cracks of different types from far-field measurements, Math. Meth. Appl. Sci., 33 (2010), 950-973. doi: 10.1002/mma.1203.

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[23]

J. C. Nédélec, Acoustic and Electromagnetic Equations, Applied Matimatical Sciences. Springer-Verlag, Berlin, 2001.

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proceedings of the American Mathematical Society, 133 (2005), 1685-1691, (electronic). doi: 10.1090/S0002-9939-05-07810-X.

[2]

H. Ammari, J. Garnier, H. Kang, W. K. Park and K. Solna, Imaging schemes for perfectly conducting cracks, SIAM, J. Appl. Math., 71 (2011), 68-91. doi: 10.1137/100800130.

[3]

A. Ben Abda, F. Delbary and H. Haddar, On the use of the reciprocity-gap functional in inverse scattering from planar cracks, Math. Models Methods Appl. Sci.,15 (2005), 1553-1574. doi: 10.1142/S0218202505000819.

[4]

F. Ben Hassen, Y. Boukari and H. Haddar, Application of the linear sampling method to retrieve cracks with impedance boundary conditions, Inverse Problems in Science and Engineering, 2012. doi: 10.1080/17415977.2012.686997.

[5]

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems, Eng. Anal. Bound. Elem. 35 (2011), 223-235. doi: 10.1016/j.enganabound.2010.08.007.

[6]

M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements, M2AN Math. Model. Numer. Anal. 35 (2001), 595-605. doi: 10.1051/m2an:2001128.

[7]

K. Bryan and M. S. Vogelius, A review of selected works on crack identification, in Geometric Methods in Inverse Problems and PDE Control (Springer, New York), MA Vol. 137, Math. Appl., 2004, 25-46. doi: 10.1007/978-1-4684-9375-7_3.

[8]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, 2006.

[9]

F. Cakoni and D. Colton, The linear sampling method for cracks, Inverse Problems, 19 (2003), 279-295. doi: 10.1088/0266-5611/19/2/303.

[10]

N. Zeev and F. Cakoni, The identification of thin dielectric objects from far field or near field scattering data, SIAM J. Appl. Math., 69 (2009), 1024-1042. doi: 10.1137/070711542.

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, second edition, Heidelberg: Springer, 1998.

[12]

D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math., 200 (2007), 21-31. doi: 10.1016/j.cam.2005.12.004.

[13]

T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern, IMA Journal of Applied Mathematics, 72 (2007), 96-112. doi: 10.1093/imamat/hxl026.

[14]

O. Ivanyshyn and R. Kress, Inverse scattering for planar cracks via nonlinear integral equations, Math. Methods Appl. Sci., 31 (2008), 1221-1232. doi: 10.1002/mma.970.

[15]

N. Grinberg and A. Kirsch, The linear sampling method in inverse obstacle scattering for impedance boundary conditions, J. Inverse Ill-Posed Probl., 10 (2002), 171-185. doi: 10.1515/jiip.2002.10.2.171.

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture in Mathematics and Its Applications 36, (2008).

[17]

A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc, Inverse Problems, 16 (2000), 89-105. doi: 10.1088/0266-5611/16/1/308.

[18]

R. Kress and P. Serranho, A hybrid method for two-dimensional crack reconstruction, Inverse Problems, 21 (2005), 773-784. doi: 10.1088/0266-5611/21/2/020.

[19]

J. J. Liu, P. A. Krutitskii and M. Sini, Numerical solution of the scattering problem for acoustic waves by a two-sided crack in 2-dimensional space, J. Comput. Math., 29 (2011), 141-166. doi: 10.4208/jams.012111.012811a.

[20]

A. Lechleiter, The factorization method is independent of transmission eigenvalues, Inverse Probl. Imaging, 3 (2009), 123-138. doi: 10.3934/ipi.2009.3.123.

[21]

J. Liu and M. Sini, Reconstruction of cracks of different types from far-field measurements, Math. Meth. Appl. Sci., 33 (2010), 950-973. doi: 10.1002/mma.1203.

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[23]

J. C. Nédélec, Acoustic and Electromagnetic Equations, Applied Matimatical Sciences. Springer-Verlag, Berlin, 2001.

[1]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[2]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[3]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[4]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[5]

Lorenzo Audibert. The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems and Imaging, 2017, 11 (6) : 1107-1119. doi: 10.3934/ipi.2017051

[6]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[7]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[8]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[9]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[10]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[11]

Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022050

[12]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[13]

Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009

[14]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[15]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[16]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[17]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[18]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[19]

Hiroshi Isozaki. Inverse boundary value problems in the horosphere - A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107-134. doi: 10.3934/ipi.2007.1.107

[20]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]