• Previous Article
    Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions
  • IPI Home
  • This Issue
  • Next Article
    Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials
November  2013, 7(4): 1123-1138. doi: 10.3934/ipi.2013.7.1123

The factorization method applied to cracks with impedance boundary conditions

1. 

INRIA Saclay Ile de France/Ecole Polytechnique, CMAP, Route de Saclay, 91128 Palaiseau Cedex, France

2. 

INRIA Saclay Ile de France / CMAP Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex

Received  August 2012 Revised  June 2013 Published  November 2013

We use the Factorization method to retrieve the shape of cracks with impedance boundary conditions from farfields associated with incident plane waves at a fixed frequency. This work is an extension of the study initiated by Kirsch and Ritter [Inverse Problems, 16, pp. 89-105, 2000] where the case of sound soft cracks is considered. We address here the scalar problem and provide theoretical validation of the method when the impedance boundary conditions hold on both sides of the crack. We then deduce an inversion algorithm and present some validating numerical results in the case of simply and multiply connected cracks.
Citation: Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proceedings of the American Mathematical Society, 133 (2005), 1685.  doi: 10.1090/S0002-9939-05-07810-X.  Google Scholar

[2]

H. Ammari, J. Garnier, H. Kang, W. K. Park and K. Solna, Imaging schemes for perfectly conducting cracks,, SIAM, 71 (2011), 68.  doi: 10.1137/100800130.  Google Scholar

[3]

A. Ben Abda, F. Delbary and H. Haddar, On the use of the reciprocity-gap functional in inverse scattering from planar cracks,, Math. Models Methods Appl. Sci., 15 (2005), 1553.  doi: 10.1142/S0218202505000819.  Google Scholar

[4]

F. Ben Hassen, Y. Boukari and H. Haddar, Application of the linear sampling method to retrieve cracks with impedance boundary conditions,, Inverse Problems in Science and Engineering, (2012).  doi: 10.1080/17415977.2012.686997.  Google Scholar

[5]

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems,, Eng. Anal. Bound. Elem. 35 (2011), 35 (2011), 223.  doi: 10.1016/j.enganabound.2010.08.007.  Google Scholar

[6]

M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements,, M2AN Math. Model. Numer. Anal. 35 (2001), 35 (2001), 595.  doi: 10.1051/m2an:2001128.  Google Scholar

[7]

K. Bryan and M. S. Vogelius, A review of selected works on crack identification,, in Geometric Methods in Inverse Problems and PDE Control (Springer, (2004), 25.  doi: 10.1007/978-1-4684-9375-7_3.  Google Scholar

[8]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory,, Springer-Verlag, (2006).   Google Scholar

[9]

F. Cakoni and D. Colton, The linear sampling method for cracks,, Inverse Problems, 19 (2003), 279.  doi: 10.1088/0266-5611/19/2/303.  Google Scholar

[10]

N. Zeev and F. Cakoni, The identification of thin dielectric objects from far field or near field scattering data,, SIAM J. Appl. Math., 69 (2009), 1024.  doi: 10.1137/070711542.  Google Scholar

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, second edition, (1998).   Google Scholar

[12]

D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem,, J. Comput. Appl. Math., 200 (2007), 21.  doi: 10.1016/j.cam.2005.12.004.  Google Scholar

[13]

T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern,, IMA Journal of Applied Mathematics, 72 (2007), 96.  doi: 10.1093/imamat/hxl026.  Google Scholar

[14]

O. Ivanyshyn and R. Kress, Inverse scattering for planar cracks via nonlinear integral equations,, Math. Methods Appl. Sci., 31 (2008), 1221.  doi: 10.1002/mma.970.  Google Scholar

[15]

N. Grinberg and A. Kirsch, The linear sampling method in inverse obstacle scattering for impedance boundary conditions,, J. Inverse Ill-Posed Probl., 10 (2002), 171.  doi: 10.1515/jiip.2002.10.2.171.  Google Scholar

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford Lecture in Mathematics and Its Applications 36, (2008).   Google Scholar

[17]

A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc,, Inverse Problems, 16 (2000), 89.  doi: 10.1088/0266-5611/16/1/308.  Google Scholar

[18]

R. Kress and P. Serranho, A hybrid method for two-dimensional crack reconstruction,, Inverse Problems, 21 (2005), 773.  doi: 10.1088/0266-5611/21/2/020.  Google Scholar

[19]

J. J. Liu, P. A. Krutitskii and M. Sini, Numerical solution of the scattering problem for acoustic waves by a two-sided crack in 2-dimensional space,, J. Comput. Math., 29 (2011), 141.  doi: 10.4208/jams.012111.012811a.  Google Scholar

[20]

A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Probl. Imaging, 3 (2009), 123.  doi: 10.3934/ipi.2009.3.123.  Google Scholar

[21]

J. Liu and M. Sini, Reconstruction of cracks of different types from far-field measurements,, Math. Meth. Appl. Sci., 33 (2010), 950.  doi: 10.1002/mma.1203.  Google Scholar

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).   Google Scholar

[23]

J. C. Nédélec, Acoustic and Electromagnetic Equations,, Applied Matimatical Sciences. Springer-Verlag, (2001).   Google Scholar

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proceedings of the American Mathematical Society, 133 (2005), 1685.  doi: 10.1090/S0002-9939-05-07810-X.  Google Scholar

[2]

H. Ammari, J. Garnier, H. Kang, W. K. Park and K. Solna, Imaging schemes for perfectly conducting cracks,, SIAM, 71 (2011), 68.  doi: 10.1137/100800130.  Google Scholar

[3]

A. Ben Abda, F. Delbary and H. Haddar, On the use of the reciprocity-gap functional in inverse scattering from planar cracks,, Math. Models Methods Appl. Sci., 15 (2005), 1553.  doi: 10.1142/S0218202505000819.  Google Scholar

[4]

F. Ben Hassen, Y. Boukari and H. Haddar, Application of the linear sampling method to retrieve cracks with impedance boundary conditions,, Inverse Problems in Science and Engineering, (2012).  doi: 10.1080/17415977.2012.686997.  Google Scholar

[5]

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems,, Eng. Anal. Bound. Elem. 35 (2011), 35 (2011), 223.  doi: 10.1016/j.enganabound.2010.08.007.  Google Scholar

[6]

M. Brühl, M. Hanke and M. Pidcock, Crack detection using electrostatic measurements,, M2AN Math. Model. Numer. Anal. 35 (2001), 35 (2001), 595.  doi: 10.1051/m2an:2001128.  Google Scholar

[7]

K. Bryan and M. S. Vogelius, A review of selected works on crack identification,, in Geometric Methods in Inverse Problems and PDE Control (Springer, (2004), 25.  doi: 10.1007/978-1-4684-9375-7_3.  Google Scholar

[8]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory,, Springer-Verlag, (2006).   Google Scholar

[9]

F. Cakoni and D. Colton, The linear sampling method for cracks,, Inverse Problems, 19 (2003), 279.  doi: 10.1088/0266-5611/19/2/303.  Google Scholar

[10]

N. Zeev and F. Cakoni, The identification of thin dielectric objects from far field or near field scattering data,, SIAM J. Appl. Math., 69 (2009), 1024.  doi: 10.1137/070711542.  Google Scholar

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, second edition, (1998).   Google Scholar

[12]

D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem,, J. Comput. Appl. Math., 200 (2007), 21.  doi: 10.1016/j.cam.2005.12.004.  Google Scholar

[13]

T. Johansson and B. D. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern,, IMA Journal of Applied Mathematics, 72 (2007), 96.  doi: 10.1093/imamat/hxl026.  Google Scholar

[14]

O. Ivanyshyn and R. Kress, Inverse scattering for planar cracks via nonlinear integral equations,, Math. Methods Appl. Sci., 31 (2008), 1221.  doi: 10.1002/mma.970.  Google Scholar

[15]

N. Grinberg and A. Kirsch, The linear sampling method in inverse obstacle scattering for impedance boundary conditions,, J. Inverse Ill-Posed Probl., 10 (2002), 171.  doi: 10.1515/jiip.2002.10.2.171.  Google Scholar

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford Lecture in Mathematics and Its Applications 36, (2008).   Google Scholar

[17]

A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc,, Inverse Problems, 16 (2000), 89.  doi: 10.1088/0266-5611/16/1/308.  Google Scholar

[18]

R. Kress and P. Serranho, A hybrid method for two-dimensional crack reconstruction,, Inverse Problems, 21 (2005), 773.  doi: 10.1088/0266-5611/21/2/020.  Google Scholar

[19]

J. J. Liu, P. A. Krutitskii and M. Sini, Numerical solution of the scattering problem for acoustic waves by a two-sided crack in 2-dimensional space,, J. Comput. Math., 29 (2011), 141.  doi: 10.4208/jams.012111.012811a.  Google Scholar

[20]

A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Probl. Imaging, 3 (2009), 123.  doi: 10.3934/ipi.2009.3.123.  Google Scholar

[21]

J. Liu and M. Sini, Reconstruction of cracks of different types from far-field measurements,, Math. Meth. Appl. Sci., 33 (2010), 950.  doi: 10.1002/mma.1203.  Google Scholar

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).   Google Scholar

[23]

J. C. Nédélec, Acoustic and Electromagnetic Equations,, Applied Matimatical Sciences. Springer-Verlag, (2001).   Google Scholar

[1]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[5]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[6]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[7]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[8]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[9]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[10]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[11]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[14]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[15]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[17]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[18]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]