• Previous Article
    Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization
  • IPI Home
  • This Issue
  • Next Article
    Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions
November  2013, 7(4): 1157-1182. doi: 10.3934/ipi.2013.7.1157

Identification of nonlinearities in transport-diffusion models of crowded motion

1. 

Department for Computational and Applied Mathematics, University of Münster, Einsteinstr. 62, 48149 Münster, Germany, Germany

2. 

DAMTP, Center for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Received  March 2012 Revised  May 2013 Published  November 2013

The aim of this paper is to formulate a class of inverse problems of particular relevance in crowded motion, namely the simultaneous identification of entropies and mobilities. We study a model case of this class, which is the identification from flux-based measurements in a stationary setup. This leads to an inverse problem for a nonlinear transport-diffusion model, where boundary values and possibly an external potential can be varied. In specific settings we provide a detailed theory for the forward map and an adjoint problem useful in the analysis and numerical solution. We further verify the simultaneous identifiability of the nonlinearities and present several numerical tests yielding further insight into the way variations in boundary values and external potential affect the quality of reconstructions.
Citation: Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems and Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157
References:
[1]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938, (electronic). doi: 10.1137/S0036139997332099.

[2]

H. Berry and H. Cható, Anomalous subdiffusion due to obstacles : A critical survey, preprint,, 2011., (). 

[3]

M. Bodnar and J. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, Journal of Differential Equations, 222 (2006), 341-380. doi: 10.1016/j.jde.2005.07.025.

[4]

S. Boi, V. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens, Nonlinear Analysis: Real World Applications, 1 (2000), 163-176. doi: 10.1016/S0362-546X(99)00399-5.

[5]

L. Boltzmann, Vorlesungen Über Gastheorie, 2 vols. 1896, 1898.

[6]

A. Bruhn, J. Weickert and C. Schnörr, Combining the advantages of local and global optic flow methods, in Proceedings of the 24th DAGM Symposium on Pattern Recognition, 454-462, London, UK, UK, 2002. Springer-Verlag. doi: 10.1007/3-540-45783-6_55.

[7]

M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Analysis: Real World Applications, 8 (2007), 939-958. doi: 10.1016/j.nonrwa.2006.04.002.

[8]

M. Burger, M. Di Francesco and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315, (electronic). doi: 10.1137/050637923.

[9]

M. Burger, P. A. Markowich and J.-F. Pietschmann, Continuous limit of a crowd motion and herding model: Analysis and numerical simulations, Kinetic and Related Models, 4 (2011), 1025-1047. doi: 10.3934/krm.2011.4.1025.

[10]

M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries, Nonlinearity, 25 (2012), 961-990. doi: 10.1088/0951-7715/25/4/961.

[11]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[12]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, 1994.

[13]

T. J. Connolly and D. J. N. Wall, On Frechet differentiability of some nonlinear operators occurring in inverse problems: An implicit function theorem approach, Inverse Problems, 6 (1990), 949-966. doi: 10.1088/0266-5611/6/6/006.

[14]

O. Debeir, P. V. Ham, R. Kiss and C. Decaestecker, Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes, IEEE Trans. Med. Imaging, (2005), 697-711. doi: 10.1109/TMI.2005.846851.

[15]

M. Di Francesco and J. Rosado, Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding, Nonlinearity, 21 (2008), 2715-2730. doi: 10.1088/0951-7715/21/11/012.

[16]

P. Duchateau, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems, SIAM Journal on Mathematical Analysis, 26 (1995), 1473-1487. doi: 10.1137/S0036141093259257.

[17]

S. Dümmel and M. Pfaffe, Identifikation eines Koeffizienten in der eindimensionalen Wärmeleitungsgleichung, Wiss. Z. Tech. Univ. Chemnitz, 34 (1992), 45-51.

[18]

H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection diffusion problems, IMA Journal of Numerical Analysis, 30 (2010), 1206-1234. doi: 10.1093/imanum/drn083.

[19]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996. doi: 10.1007/978-94-009-1740-8.

[20]

A. Eriksson, M. Nilsson Jacobi, J. Nystrm and K. Tunstrm, Determining interaction rules in animal swarms, Behavioral Ecology, 21 (2010), 1106-1111. doi: 10.1093/beheco/arq118.

[21]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

[22]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224.

[23]

D. Gillespie, W. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E., 68 (2003), 031503. doi: 10.1103/PhysRevE.68.031503.

[24]

D. Hall and M. Hoshino, Effects of macromolecular crowding on intracellular diffusion from a single particle perspective, Biophysical Reviews, 2 (2010), 39-53. doi: 10.1007/s12551-010-0029-0.

[25]

S. Handrock-Meyer, Identifiability of distributed parameters for a class of quasilinear differential equations, Journal of Inverse and Ill-posed Problems, 5, (1997). doi: 10.1515/jiip.1997.5.1.19.

[26]

A. Hasanov, Identification of unknown diffusion and convection coefficients in ion transport problems from flux data: An analytical approach, J. Math. Chem., 48 (2010), 413-423. doi: 10.1007/s10910-010-9683-5.

[27]

A. Hasanov and A. Erdem, Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar, IMA J. Appl. Math., 73 (2008), 579-591. doi: 10.1093/imamat/hxm056.

[28]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Advances in Applied Mathematics, 26 (2001), 280-301. doi: 10.1006/aama.2001.0721.

[29]

S. P. Hoogendoorn, W. Daamen and P. H. L. Bovy, Extracting microscopic pedestrian characteristics from video data, in TRB 2004 Annual Meeting. CD-Rom, 2004.

[30]

B. K. P. Horn and B. G. Schunck, Determining optical flow: A Retrospective, Artif. Intell., 59 (1993), 81-87. doi: 10.1016/0004-3702(93)90173-9.

[31]

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7.

[32]

T. L. Jackson and H. M. Byrne, A mechanical model of tumor encapsulation and transcapsular spread, Mathematical Biosciences, 180 (2002), 307-328. doi: 10.1016/S0025-5564(02)00118-9.

[33]

F. James and M. Postel, Numerical gradient methods for flux identification in a system of conservation laws, Journal of Engineering Mathematics, 60 (2008), 293-317. doi: 10.1007/s10665-007-9165-3.

[34]

F. James and M. Sepúlveda, Convergence results for the flux identification in a scalar conservation law, SIAM Journal on Control and Optimization, 37 (1999), 869-891. doi: 10.1137/S0363012996272722.

[35]

A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Math. Models Methods Appl. Sci., 22 (2012), 1250009, 26 pp. doi: 10.1142/S0218202512500091.

[36]

S. Kaczmarz, Approximate solution of systems of linear equations, Internat. J. Control, 57 (1993), 1269-1271. Translated from the German. doi: 10.1080/00207179308934446.

[37]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

[38]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[39]

K. Keren, P. T. Yam, A. Kinkhabwala, A. Mogilner and J. A. Theriot, Intracellular fluid flow in rapidly moving cells, Nature Cell Biology, 11 (2009), 1219-1224. doi: 10.1038/ncb1965.

[40]

J. Kerridge, S. Keller, T. Chamberlain and N. Sumpter, Collecting pedestrian trajectory data in real-time, in Pedestrian and Evacuation Dynamics 2005 (editors, N. Waldau, P. Gattermann, H. Knoflacher and M. Schreckenberg), 27-39. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-47064-9_3.

[41]

P. Knabner and B. Igler, Structural identification of nonlinear coefficient functions in transport processes through porous media, in Lectures on Applied Mathematics (Munich, 1999), 157-175. Springer, Berlin, 2000.

[42]

R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems, in Ill-Posed and Inverse Problems, pages 253-270. VSP, Zeist, 2002.

[43]

P. Kügler, Identification of a temperature dependent heat conductivity from single boundary measurements, SIAM J. Numer. Anal., 41 (2003), 1543-1563. doi: 10.1137/S0036142902415900.

[44]

B. D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, in IJCAI81, 674-679, 1981.

[45]

R. Lukeman, Y.-X. Li and L. Edelstein-Keshet, Inferring individual rules from collective behavior, Proceedings of the National Academy of Sciences, 107 (2010), 12576-12580. doi: 10.1073/pnas.1001763107.

[46]

M. Moeller, M. Burger, P. Dieterich and A. Schwab, A Framework for Automated Cell Tracking in Phase Contrast Microscopic Videos Based on Normal Velocities, Technical Report, WWU Muenster, 2010.

[47]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570. doi: 10.1007/s002850050158.

[48]

D. Morale, V. Capasso and K. Oelschlger, An interacting particle system modelling aggregation behavior: from individuals to populations, Journal of Mathematical Biology, 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1.

[49]

S. Olla and S. R. S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Comm. Math. Phys., 135 (1991), 355-378. doi: 10.1007/BF02098047.

[50]

S. Olla, S. R. S. Varadhan and H.-T. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Comm. Math. Phys., 155 (1993), 523-560. doi: 10.1007/BF02096727.

[51]

Y. H. Ou, A. Hasanov and Z. H. Liu, Inverse coefficient problems for nonlinear parabolic differential equations, Acta. Math. Sin. (Engl. Ser.), 24 (2008), 1617-1624. doi: 10.1007/s10114-008-6384-0.

[52]

K. Painter and T. Hillen, Volume-filling and quorum sensing in models for chemosensitive movement, Canadian Applied Mathematics Quaterly, 10 (2003), 280-301.

[53]

N. Papenberg, A. Bruhn, T. Brox, S. Didas and J. Weickert, Highly accurate optic flow computation with theoretically justified warping, International Journal of Computer Vision, 67 (2006), 141-158. doi: 10.1007/s11263-005-3960-y.

[54]

I. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 151 (2005), 182-195. doi: 10.1016/j.jsb.2005.06.002.

[55]

J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 2 (1930), 171-180.

[56]

M. J. Simpson, B. D. Hughes and K. A. Landman, Diffusion populations: Ghosts or folks, Australasian Journal of Engineering Education, 15 (2009), 59-68.

[57]

M. J. Simpson, K. A. Landman and B. D. Hughes, Multi-species simple exclusion process, Physica A, 388 (2009), 399-406. doi: 10.1016/j.physa.2008.10.038.

[58]

C. Topaz, A. Bertozzi and M. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6.

[59]

U. Weidmann, Transporttechnik der Fussgänger - Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturstudie), Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich, ETH-Hönggerberg, CH-8093 Zürich, March 1993. in German.

[60]

C. Zimmer, B. Zhang, A. Dufour, A. Thebaud, S. Berlemont, V. Meas-Yedid and J.-C. Marin, On the digital trail of mobile cells, Signal Processing Magazine, IEEE, 23 (2006), 54-62. doi: 10.1109/MSP.2006.1628878.

show all references

References:
[1]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938, (electronic). doi: 10.1137/S0036139997332099.

[2]

H. Berry and H. Cható, Anomalous subdiffusion due to obstacles : A critical survey, preprint,, 2011., (). 

[3]

M. Bodnar and J. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, Journal of Differential Equations, 222 (2006), 341-380. doi: 10.1016/j.jde.2005.07.025.

[4]

S. Boi, V. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens, Nonlinear Analysis: Real World Applications, 1 (2000), 163-176. doi: 10.1016/S0362-546X(99)00399-5.

[5]

L. Boltzmann, Vorlesungen Über Gastheorie, 2 vols. 1896, 1898.

[6]

A. Bruhn, J. Weickert and C. Schnörr, Combining the advantages of local and global optic flow methods, in Proceedings of the 24th DAGM Symposium on Pattern Recognition, 454-462, London, UK, UK, 2002. Springer-Verlag. doi: 10.1007/3-540-45783-6_55.

[7]

M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Analysis: Real World Applications, 8 (2007), 939-958. doi: 10.1016/j.nonrwa.2006.04.002.

[8]

M. Burger, M. Di Francesco and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315, (electronic). doi: 10.1137/050637923.

[9]

M. Burger, P. A. Markowich and J.-F. Pietschmann, Continuous limit of a crowd motion and herding model: Analysis and numerical simulations, Kinetic and Related Models, 4 (2011), 1025-1047. doi: 10.3934/krm.2011.4.1025.

[10]

M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries, Nonlinearity, 25 (2012), 961-990. doi: 10.1088/0951-7715/25/4/961.

[11]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1039-9.

[12]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, 1994.

[13]

T. J. Connolly and D. J. N. Wall, On Frechet differentiability of some nonlinear operators occurring in inverse problems: An implicit function theorem approach, Inverse Problems, 6 (1990), 949-966. doi: 10.1088/0266-5611/6/6/006.

[14]

O. Debeir, P. V. Ham, R. Kiss and C. Decaestecker, Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes, IEEE Trans. Med. Imaging, (2005), 697-711. doi: 10.1109/TMI.2005.846851.

[15]

M. Di Francesco and J. Rosado, Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding, Nonlinearity, 21 (2008), 2715-2730. doi: 10.1088/0951-7715/21/11/012.

[16]

P. Duchateau, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems, SIAM Journal on Mathematical Analysis, 26 (1995), 1473-1487. doi: 10.1137/S0036141093259257.

[17]

S. Dümmel and M. Pfaffe, Identifikation eines Koeffizienten in der eindimensionalen Wärmeleitungsgleichung, Wiss. Z. Tech. Univ. Chemnitz, 34 (1992), 45-51.

[18]

H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection diffusion problems, IMA Journal of Numerical Analysis, 30 (2010), 1206-1234. doi: 10.1093/imanum/drn083.

[19]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996. doi: 10.1007/978-94-009-1740-8.

[20]

A. Eriksson, M. Nilsson Jacobi, J. Nystrm and K. Tunstrm, Determining interaction rules in animal swarms, Behavioral Ecology, 21 (2010), 1106-1111. doi: 10.1093/beheco/arq118.

[21]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

[22]

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224.

[23]

D. Gillespie, W. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E., 68 (2003), 031503. doi: 10.1103/PhysRevE.68.031503.

[24]

D. Hall and M. Hoshino, Effects of macromolecular crowding on intracellular diffusion from a single particle perspective, Biophysical Reviews, 2 (2010), 39-53. doi: 10.1007/s12551-010-0029-0.

[25]

S. Handrock-Meyer, Identifiability of distributed parameters for a class of quasilinear differential equations, Journal of Inverse and Ill-posed Problems, 5, (1997). doi: 10.1515/jiip.1997.5.1.19.

[26]

A. Hasanov, Identification of unknown diffusion and convection coefficients in ion transport problems from flux data: An analytical approach, J. Math. Chem., 48 (2010), 413-423. doi: 10.1007/s10910-010-9683-5.

[27]

A. Hasanov and A. Erdem, Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar, IMA J. Appl. Math., 73 (2008), 579-591. doi: 10.1093/imamat/hxm056.

[28]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Advances in Applied Mathematics, 26 (2001), 280-301. doi: 10.1006/aama.2001.0721.

[29]

S. P. Hoogendoorn, W. Daamen and P. H. L. Bovy, Extracting microscopic pedestrian characteristics from video data, in TRB 2004 Annual Meeting. CD-Rom, 2004.

[30]

B. K. P. Horn and B. G. Schunck, Determining optical flow: A Retrospective, Artif. Intell., 59 (1993), 81-87. doi: 10.1016/0004-3702(93)90173-9.

[31]

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7.

[32]

T. L. Jackson and H. M. Byrne, A mechanical model of tumor encapsulation and transcapsular spread, Mathematical Biosciences, 180 (2002), 307-328. doi: 10.1016/S0025-5564(02)00118-9.

[33]

F. James and M. Postel, Numerical gradient methods for flux identification in a system of conservation laws, Journal of Engineering Mathematics, 60 (2008), 293-317. doi: 10.1007/s10665-007-9165-3.

[34]

F. James and M. Sepúlveda, Convergence results for the flux identification in a scalar conservation law, SIAM Journal on Control and Optimization, 37 (1999), 869-891. doi: 10.1137/S0363012996272722.

[35]

A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Math. Models Methods Appl. Sci., 22 (2012), 1250009, 26 pp. doi: 10.1142/S0218202512500091.

[36]

S. Kaczmarz, Approximate solution of systems of linear equations, Internat. J. Control, 57 (1993), 1269-1271. Translated from the German. doi: 10.1080/00207179308934446.

[37]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

[38]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[39]

K. Keren, P. T. Yam, A. Kinkhabwala, A. Mogilner and J. A. Theriot, Intracellular fluid flow in rapidly moving cells, Nature Cell Biology, 11 (2009), 1219-1224. doi: 10.1038/ncb1965.

[40]

J. Kerridge, S. Keller, T. Chamberlain and N. Sumpter, Collecting pedestrian trajectory data in real-time, in Pedestrian and Evacuation Dynamics 2005 (editors, N. Waldau, P. Gattermann, H. Knoflacher and M. Schreckenberg), 27-39. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-47064-9_3.

[41]

P. Knabner and B. Igler, Structural identification of nonlinear coefficient functions in transport processes through porous media, in Lectures on Applied Mathematics (Munich, 1999), 157-175. Springer, Berlin, 2000.

[42]

R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems, in Ill-Posed and Inverse Problems, pages 253-270. VSP, Zeist, 2002.

[43]

P. Kügler, Identification of a temperature dependent heat conductivity from single boundary measurements, SIAM J. Numer. Anal., 41 (2003), 1543-1563. doi: 10.1137/S0036142902415900.

[44]

B. D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, in IJCAI81, 674-679, 1981.

[45]

R. Lukeman, Y.-X. Li and L. Edelstein-Keshet, Inferring individual rules from collective behavior, Proceedings of the National Academy of Sciences, 107 (2010), 12576-12580. doi: 10.1073/pnas.1001763107.

[46]

M. Moeller, M. Burger, P. Dieterich and A. Schwab, A Framework for Automated Cell Tracking in Phase Contrast Microscopic Videos Based on Normal Velocities, Technical Report, WWU Muenster, 2010.

[47]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570. doi: 10.1007/s002850050158.

[48]

D. Morale, V. Capasso and K. Oelschlger, An interacting particle system modelling aggregation behavior: from individuals to populations, Journal of Mathematical Biology, 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1.

[49]

S. Olla and S. R. S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Comm. Math. Phys., 135 (1991), 355-378. doi: 10.1007/BF02098047.

[50]

S. Olla, S. R. S. Varadhan and H.-T. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Comm. Math. Phys., 155 (1993), 523-560. doi: 10.1007/BF02096727.

[51]

Y. H. Ou, A. Hasanov and Z. H. Liu, Inverse coefficient problems for nonlinear parabolic differential equations, Acta. Math. Sin. (Engl. Ser.), 24 (2008), 1617-1624. doi: 10.1007/s10114-008-6384-0.

[52]

K. Painter and T. Hillen, Volume-filling and quorum sensing in models for chemosensitive movement, Canadian Applied Mathematics Quaterly, 10 (2003), 280-301.

[53]

N. Papenberg, A. Bruhn, T. Brox, S. Didas and J. Weickert, Highly accurate optic flow computation with theoretically justified warping, International Journal of Computer Vision, 67 (2006), 141-158. doi: 10.1007/s11263-005-3960-y.

[54]

I. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 151 (2005), 182-195. doi: 10.1016/j.jsb.2005.06.002.

[55]

J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 2 (1930), 171-180.

[56]

M. J. Simpson, B. D. Hughes and K. A. Landman, Diffusion populations: Ghosts or folks, Australasian Journal of Engineering Education, 15 (2009), 59-68.

[57]

M. J. Simpson, K. A. Landman and B. D. Hughes, Multi-species simple exclusion process, Physica A, 388 (2009), 399-406. doi: 10.1016/j.physa.2008.10.038.

[58]

C. Topaz, A. Bertozzi and M. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6.

[59]

U. Weidmann, Transporttechnik der Fussgänger - Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturstudie), Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich, ETH-Hönggerberg, CH-8093 Zürich, March 1993. in German.

[60]

C. Zimmer, B. Zhang, A. Dufour, A. Thebaud, S. Berlemont, V. Meas-Yedid and J.-C. Marin, On the digital trail of mobile cells, Signal Processing Magazine, IEEE, 23 (2006), 54-62. doi: 10.1109/MSP.2006.1628878.

[1]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations and Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[2]

Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007

[3]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[4]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[5]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[6]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[7]

Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modeling. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 77-92. doi: 10.3934/dcdsb.2015.20.77

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Clément Jourdana, Paola Pietra. A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures. Kinetic and Related Models, 2019, 12 (1) : 217-242. doi: 10.3934/krm.2019010

[10]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure and Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[11]

Elio E. Espejo, Masaki Kurokiba, Takashi Suzuki. Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2627-2644. doi: 10.3934/cpaa.2013.12.2627

[12]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[13]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[14]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[15]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[16]

Xin Li, Feng Bao, Kyle Gallivan. A drift homotopy implicit particle filter method for nonlinear filtering problems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 727-746. doi: 10.3934/dcdss.2021097

[17]

Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675

[18]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[19]

François Monard, Guillaume Bal. Inverse diffusion problems with redundant internal information. Inverse Problems and Imaging, 2012, 6 (2) : 289-313. doi: 10.3934/ipi.2012.6.289

[20]

Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of non-uniform sign. Inverse Problems and Imaging, 2019, 13 (5) : 1007-1021. doi: 10.3934/ipi.2019045

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (0)

[Back to Top]