Citation: |
[1] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938, (electronic).doi: 10.1137/S0036139997332099. |
[2] |
H. Berry and H. Cható, Anomalous subdiffusion due to obstacles : A critical survey, preprint, 2011. |
[3] |
M. Bodnar and J. Velazquez, An integro-differential equation arising as a limit of individual cell-based models, Journal of Differential Equations, 222 (2006), 341-380.doi: 10.1016/j.jde.2005.07.025. |
[4] |
S. Boi, V. Capasso and D. Morale, Modeling the aggregative behavior of ants of the species polyergus rufescens, Nonlinear Analysis: Real World Applications, 1 (2000), 163-176.doi: 10.1016/S0362-546X(99)00399-5. |
[5] |
L. Boltzmann, Vorlesungen Über Gastheorie, 2 vols. 1896, 1898. |
[6] |
A. Bruhn, J. Weickert and C. Schnörr, Combining the advantages of local and global optic flow methods, in Proceedings of the 24th DAGM Symposium on Pattern Recognition, 454-462, London, UK, UK, 2002. Springer-Verlag.doi: 10.1007/3-540-45783-6_55. |
[7] |
M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Analysis: Real World Applications, 8 (2007), 939-958.doi: 10.1016/j.nonrwa.2006.04.002. |
[8] |
M. Burger, M. Di Francesco and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315, (electronic).doi: 10.1137/050637923. |
[9] |
M. Burger, P. A. Markowich and J.-F. Pietschmann, Continuous limit of a crowd motion and herding model: Analysis and numerical simulations, Kinetic and Related Models, 4 (2011), 1025-1047.doi: 10.3934/krm.2011.4.1025. |
[10] |
M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries, Nonlinearity, 25 (2012), 961-990.doi: 10.1088/0951-7715/25/4/961. |
[11] |
C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1039-9. |
[12] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, 1994. |
[13] |
T. J. Connolly and D. J. N. Wall, On Frechet differentiability of some nonlinear operators occurring in inverse problems: An implicit function theorem approach, Inverse Problems, 6 (1990), 949-966.doi: 10.1088/0266-5611/6/6/006. |
[14] |
O. Debeir, P. V. Ham, R. Kiss and C. Decaestecker, Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes, IEEE Trans. Med. Imaging, (2005), 697-711.doi: 10.1109/TMI.2005.846851. |
[15] |
M. Di Francesco and J. Rosado, Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding, Nonlinearity, 21 (2008), 2715-2730.doi: 10.1088/0951-7715/21/11/012. |
[16] |
P. Duchateau, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems, SIAM Journal on Mathematical Analysis, 26 (1995), 1473-1487.doi: 10.1137/S0036141093259257. |
[17] |
S. Dümmel and M. Pfaffe, Identifikation eines Koeffizienten in der eindimensionalen Wärmeleitungsgleichung, Wiss. Z. Tech. Univ. Chemnitz, 34 (1992), 45-51. |
[18] |
H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection diffusion problems, IMA Journal of Numerical Analysis, 30 (2010), 1206-1234.doi: 10.1093/imanum/drn083. |
[19] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.doi: 10.1007/978-94-009-1740-8. |
[20] |
A. Eriksson, M. Nilsson Jacobi, J. Nystrm and K. Tunstrm, Determining interaction rules in animal swarms, Behavioral Ecology, 21 (2010), 1106-1111.doi: 10.1093/beheco/arq118. |
[21] |
L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. |
[22] |
D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. |
[23] |
D. Gillespie, W. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E., 68 (2003), 031503.doi: 10.1103/PhysRevE.68.031503. |
[24] |
D. Hall and M. Hoshino, Effects of macromolecular crowding on intracellular diffusion from a single particle perspective, Biophysical Reviews, 2 (2010), 39-53.doi: 10.1007/s12551-010-0029-0. |
[25] |
S. Handrock-Meyer, Identifiability of distributed parameters for a class of quasilinear differential equations, Journal of Inverse and Ill-posed Problems, 5, (1997).doi: 10.1515/jiip.1997.5.1.19. |
[26] |
A. Hasanov, Identification of unknown diffusion and convection coefficients in ion transport problems from flux data: An analytical approach, J. Math. Chem., 48 (2010), 413-423.doi: 10.1007/s10910-010-9683-5. |
[27] |
A. Hasanov and A. Erdem, Determination of unknown coefficient in a non-linear elliptic problem related to the elastoplastic torsion of a bar, IMA J. Appl. Math., 73 (2008), 579-591.doi: 10.1093/imamat/hxm056. |
[28] |
T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Advances in Applied Mathematics, 26 (2001), 280-301.doi: 10.1006/aama.2001.0721. |
[29] |
S. P. Hoogendoorn, W. Daamen and P. H. L. Bovy, Extracting microscopic pedestrian characteristics from video data, in TRB 2004 Annual Meeting. CD-Rom, 2004. |
[30] |
B. K. P. Horn and B. G. Schunck, Determining optical flow: A Retrospective, Artif. Intell., 59 (1993), 81-87.doi: 10.1016/0004-3702(93)90173-9. |
[31] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.doi: 10.1016/S0191-2615(01)00015-7. |
[32] |
T. L. Jackson and H. M. Byrne, A mechanical model of tumor encapsulation and transcapsular spread, Mathematical Biosciences, 180 (2002), 307-328.doi: 10.1016/S0025-5564(02)00118-9. |
[33] |
F. James and M. Postel, Numerical gradient methods for flux identification in a system of conservation laws, Journal of Engineering Mathematics, 60 (2008), 293-317.doi: 10.1007/s10665-007-9165-3. |
[34] |
F. James and M. Sepúlveda, Convergence results for the flux identification in a scalar conservation law, SIAM Journal on Control and Optimization, 37 (1999), 869-891.doi: 10.1137/S0363012996272722. |
[35] |
A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Math. Models Methods Appl. Sci., 22 (2012), 1250009, 26 pp.doi: 10.1142/S0218202512500091. |
[36] |
S. Kaczmarz, Approximate solution of systems of linear equations, Internat. J. Control, 57 (1993), 1269-1271. Translated from the German.doi: 10.1080/00207179308934446. |
[37] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. |
[38] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[39] |
K. Keren, P. T. Yam, A. Kinkhabwala, A. Mogilner and J. A. Theriot, Intracellular fluid flow in rapidly moving cells, Nature Cell Biology, 11 (2009), 1219-1224.doi: 10.1038/ncb1965. |
[40] |
J. Kerridge, S. Keller, T. Chamberlain and N. Sumpter, Collecting pedestrian trajectory data in real-time, in Pedestrian and Evacuation Dynamics 2005 (editors, N. Waldau, P. Gattermann, H. Knoflacher and M. Schreckenberg), 27-39. Springer Berlin Heidelberg, 2007.doi: 10.1007/978-3-540-47064-9_3. |
[41] |
P. Knabner and B. Igler, Structural identification of nonlinear coefficient functions in transport processes through porous media, in Lectures on Applied Mathematics (Munich, 1999), 157-175. Springer, Berlin, 2000. |
[42] |
R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems, in Ill-Posed and Inverse Problems, pages 253-270. VSP, Zeist, 2002. |
[43] |
P. Kügler, Identification of a temperature dependent heat conductivity from single boundary measurements, SIAM J. Numer. Anal., 41 (2003), 1543-1563.doi: 10.1137/S0036142902415900. |
[44] |
B. D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, in IJCAI81, 674-679, 1981. |
[45] |
R. Lukeman, Y.-X. Li and L. Edelstein-Keshet, Inferring individual rules from collective behavior, Proceedings of the National Academy of Sciences, 107 (2010), 12576-12580.doi: 10.1073/pnas.1001763107. |
[46] |
M. Moeller, M. Burger, P. Dieterich and A. Schwab, A Framework for Automated Cell Tracking in Phase Contrast Microscopic Videos Based on Normal Velocities, Technical Report, WWU Muenster, 2010. |
[47] |
A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.doi: 10.1007/s002850050158. |
[48] |
D. Morale, V. Capasso and K. Oelschlger, An interacting particle system modelling aggregation behavior: from individuals to populations, Journal of Mathematical Biology, 50 (2005), 49-66.doi: 10.1007/s00285-004-0279-1. |
[49] |
S. Olla and S. R. S. Varadhan, Scaling limit for interacting Ornstein-Uhlenbeck processes, Comm. Math. Phys., 135 (1991), 355-378.doi: 10.1007/BF02098047. |
[50] |
S. Olla, S. R. S. Varadhan and H.-T. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Comm. Math. Phys., 155 (1993), 523-560.doi: 10.1007/BF02096727. |
[51] |
Y. H. Ou, A. Hasanov and Z. H. Liu, Inverse coefficient problems for nonlinear parabolic differential equations, Acta. Math. Sin. (Engl. Ser.), 24 (2008), 1617-1624.doi: 10.1007/s10114-008-6384-0. |
[52] |
K. Painter and T. Hillen, Volume-filling and quorum sensing in models for chemosensitive movement, Canadian Applied Mathematics Quaterly, 10 (2003), 280-301. |
[53] |
N. Papenberg, A. Bruhn, T. Brox, S. Didas and J. Weickert, Highly accurate optic flow computation with theoretically justified warping, International Journal of Computer Vision, 67 (2006), 141-158.doi: 10.1007/s11263-005-3960-y. |
[54] |
I. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, 151 (2005), 182-195.doi: 10.1016/j.jsb.2005.06.002. |
[55] |
J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 2 (1930), 171-180. |
[56] |
M. J. Simpson, B. D. Hughes and K. A. Landman, Diffusion populations: Ghosts or folks, Australasian Journal of Engineering Education, 15 (2009), 59-68. |
[57] |
M. J. Simpson, K. A. Landman and B. D. Hughes, Multi-species simple exclusion process, Physica A, 388 (2009), 399-406.doi: 10.1016/j.physa.2008.10.038. |
[58] |
C. Topaz, A. Bertozzi and M. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68 (2006), 1601-1623.doi: 10.1007/s11538-006-9088-6. |
[59] |
U. Weidmann, Transporttechnik der Fussgänger - Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturstudie), Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich, ETH-Hönggerberg, CH-8093 Zürich, March 1993. in German. |
[60] |
C. Zimmer, B. Zhang, A. Dufour, A. Thebaud, S. Berlemont, V. Meas-Yedid and J.-C. Marin, On the digital trail of mobile cells, Signal Processing Magazine, IEEE, 23 (2006), 54-62.doi: 10.1109/MSP.2006.1628878. |