Citation: |
[1] |
M. Abdelwahed and M. Hassine, Topological optimization method for a geometric control problem in Stokes flow, Appl. Numer. Math., 59 (2009), 1823-1838.doi: 10.1016/j.apnum.2009.01.008. |
[2] |
L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389-416 (electronic).doi: 10.3934/dcdsb.2007.8.389. |
[3] |
L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography, SIAM J. Control Optim., 47 (2008), 1556-1590.doi: 10.1137/070687438. |
[4] |
C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552.doi: 10.1088/0266-5611/21/5/003. |
[5] |
C. J. S. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations, J. Inverse Ill-Posed Probl., 15 (2007), 461-481.doi: 10.1515/jiip.2007.026. |
[6] |
C. Amrouche and V. Girault, Problèmes généralisés de Stokes, Portugal. Math., 49 (1992), 463-503. |
[7] |
C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44(119) (1994), 109-140. |
[8] |
M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101.doi: 10.1142/S0218202511005660. |
[9] |
A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid, Inverse Problems, 26 (2010), 125015, 25 pp.doi: 10.1088/0266-5611/26/12/125015. |
[10] |
A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case, Appl. Anal., to appear. |
[11] |
A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control Optim., 48 (2009/10), 2871-2900. doi: 10.1137/070704332. |
[12] |
F. Boyer and P. Fabrie, "Éléments d'Analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles," Mathématiques & Applications (Berlin) [Mathematics & Applications], 52, Springer-Verlag, Berlin, 2006. |
[13] |
D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems," Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser Boston, Inc., Boston, MA, 2005. |
[14] |
C. Conca, P. Cumsille, J. Ortega and L. Rosier, Detecting a moving obstacle in an ideal fluid by a boundary measurement, C. R. Math. Acad. Sci. Paris, 346 (2008), 839-844.doi: 10.1016/j.crma.2008.06.007. |
[15] |
C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010, 18 pp.doi: 10.1088/0266-5611/26/9/095010. |
[16] |
M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95-121. |
[17] |
M. Engliš and J. Peetre, A Green's function for the annulus, Ann. Mat. Pura Appl. (4), 171 (1996), 313-377.doi: 10.1007/BF01759391. |
[18] |
K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybernet., 34 (2005), 203-225. |
[19] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems," Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994. |
[20] |
S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim., 39 (2001), 1756-1778 (electronic).doi: 10.1137/S0363012900369538. |
[21] |
A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques & Applications (Berlin) [Mathematics & Applications], 48, Springer, Berlin, 2005. |
[22] |
D. Martin, "Finite Element Library Mélina," Available from: http://anum-maths.univ-rennes1.fr/melina/. |
[23] |
V. Maz'ya and T. Shaposhnikova, "Theory of Multipliers in Spaces of Differentiable Functions," Monographs and Studies in Mathematics, 23, Pitman (Advanced Publishing Program), Boston, MA, 1985. |
[24] |
F. Murat and J. Simon, "Sur le Contrôle par un Domaine Géométrique," Rapport du L.A. 189, Université de Paris VI, France, 1976. |
[25] |
J. Nocedal and S. J. Wright, "Numerical Optimization," Second edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006. |
[26] |
J. R. Shewchuk, "Mesh Generator Triangle," Available from: http://www.cs.cmu.edu/~quake/triangle.html. |
[27] |
J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1980), 649-687 (1981).doi: 10.1080/01630563.1980.10120631. |
[28] |
J. Simon, Second variations for domain optimization problems, in "Control and Estimation of Distributed Parameter Systems" (Vorau, 1988), Internat. Ser. Numer. Math., 91, Birkhäuser, Basel, (1989), 361-378. |
[29] |
J. Simon, Domain variation for drag in Stokes flow, in "Control Theory of Distributed Parameter Systems and Applications" (Shanghai, 1990), Lecture Notes in Control and Inform. Sci., 159, Springer, Berlin, (1991), 28-42.doi: 10.1007/BFb0004434. |
[30] |
J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), 1251-1272 (electronic).doi: 10.1137/S0363012997323230. |
[31] |
J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58106-9. |