February  2013, 7(1): 123-157. doi: 10.3934/ipi.2013.7.123

A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid

1. 

Université de Technologie de Compiègne, Laboratoire de Mathématiques Appliquées, EA 2222, Compiègne, France, France

2. 

Université de Pau et des pays de l'Adour, Laboratoire de Mathématiques Appliquées, UMR CNRS 5142, Pau, France

3. 

Université d'Oran, Département de Mathématiques, BP 1524, El-Menaouer, Oran, Algeria

Received  January 2012 Revised  October 2012 Published  February 2013

The aim of our work is to reconstruct an inclusion $\omega$ immersed in a fluid flowing in a larger bounded domain $\Omega$ via a boundary measurement on $\partial\Omega$. Here the fluid motion is assumed to be governed by the Stokes equations. We study the inverse problem of reconstructing $\omega$ thanks to the tools of shape optimization by minimizing a Kohn-Vogelius type cost functional. We first characterize the gradient of this cost functional in order to make a numerical resolution. Then, in order to study the stability of this problem, we give the expression of the shape Hessian. We show the compactness of the Riesz operator corresponding to this shape Hessian at a critical point which explains why the inverse problem is ill-posed. Therefore we need some regularization methods to solve numerically this problem. We illustrate those general results by some explicit calculus of the shape Hessian in some particular geometries. In particular, we solve explicitly the Stokes equations in a concentric annulus. Finally, we present some numerical simulations using a parametric method.
Citation: Fabien Caubet, Marc Dambrine, Djalil Kateb, Chahnaz Zakia Timimoun. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Problems & Imaging, 2013, 7 (1) : 123-157. doi: 10.3934/ipi.2013.7.123
References:
[1]

M. Abdelwahed and M. Hassine, Topological optimization method for a geometric control problem in Stokes flow,, Appl. Numer. Math., 59 (2009), 1823.  doi: 10.1016/j.apnum.2009.01.008.  Google Scholar

[2]

L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389.  doi: 10.3934/dcdsb.2007.8.389.  Google Scholar

[3]

L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography,, SIAM J. Control Optim., 47 (2008), 1556.  doi: 10.1137/070687438.  Google Scholar

[4]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531.  doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[5]

C. J. S. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations,, J. Inverse Ill-Posed Probl., 15 (2007), 461.  doi: 10.1515/jiip.2007.026.  Google Scholar

[6]

C. Amrouche and V. Girault, Problèmes généralisés de Stokes,, Portugal. Math., 49 (1992), 463.   Google Scholar

[7]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J., 44(119) (1994), 109.   Google Scholar

[8]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods,, Math. Models Methods Appl. Sci., 21 (2011), 2069.  doi: 10.1142/S0218202511005660.  Google Scholar

[9]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[10]

A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case,, Appl. Anal., ().   Google Scholar

[11]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control Optim., 48 (): 2871.  doi: 10.1137/070704332.  Google Scholar

[12]

F. Boyer and P. Fabrie, "Éléments d'Analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles,", Mathématiques & Applications (Berlin) [Mathematics & Applications], 52 (2006).   Google Scholar

[13]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems,", Progress in Nonlinear Differential Equations and their Applications, 65 (2005).   Google Scholar

[14]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, Detecting a moving obstacle in an ideal fluid by a boundary measurement,, C. R. Math. Acad. Sci. Paris, 346 (2008), 839.  doi: 10.1016/j.crma.2008.06.007.  Google Scholar

[15]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[16]

M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes,, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95.   Google Scholar

[17]

M. Engliš and J. Peetre, A Green's function for the annulus,, Ann. Mat. Pura Appl. (4), 171 (1996), 313.  doi: 10.1007/BF01759391.  Google Scholar

[18]

K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information,, Control Cybernet., 34 (2005), 203.   Google Scholar

[19]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994).   Google Scholar

[20]

S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case,, SIAM J. Control Optim., 39 (2001), 1756.  doi: 10.1137/S0363012900369538.  Google Scholar

[21]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique,", Mathématiques & Applications (Berlin) [Mathematics & Applications], 48 (2005).   Google Scholar

[22]

D. Martin, "Finite Element Library Mélina,", Available from: , ().   Google Scholar

[23]

V. Maz'ya and T. Shaposhnikova, "Theory of Multipliers in Spaces of Differentiable Functions,", Monographs and Studies in Mathematics, 23 (1985).   Google Scholar

[24]

F. Murat and J. Simon, "Sur le Contrôle par un Domaine Géométrique,", Rapport du L.A. 189, (1976).   Google Scholar

[25]

J. Nocedal and S. J. Wright, "Numerical Optimization,", Second edition, (2006).   Google Scholar

[26]

J. R. Shewchuk, "Mesh Generator Triangle,", Available from: , ().   Google Scholar

[27]

J. Simon, Differentiation with respect to the domain in boundary value problems,, Numer. Funct. Anal. Optim., 2 (1980), 649.  doi: 10.1080/01630563.1980.10120631.  Google Scholar

[28]

J. Simon, Second variations for domain optimization problems,, in, 91 (1989), 361.   Google Scholar

[29]

J. Simon, Domain variation for drag in Stokes flow,, in, 159 (1991), 28.  doi: 10.1007/BFb0004434.  Google Scholar

[30]

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization,, SIAM J. Control Optim., 37 (1999), 1251.  doi: 10.1137/S0363012997323230.  Google Scholar

[31]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

show all references

References:
[1]

M. Abdelwahed and M. Hassine, Topological optimization method for a geometric control problem in Stokes flow,, Appl. Numer. Math., 59 (2009), 1823.  doi: 10.1016/j.apnum.2009.01.008.  Google Scholar

[2]

L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two,, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 389.  doi: 10.3934/dcdsb.2007.8.389.  Google Scholar

[3]

L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography,, SIAM J. Control Optim., 47 (2008), 1556.  doi: 10.1137/070687438.  Google Scholar

[4]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531.  doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[5]

C. J. S. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional Stokes equations,, J. Inverse Ill-Posed Probl., 15 (2007), 461.  doi: 10.1515/jiip.2007.026.  Google Scholar

[6]

C. Amrouche and V. Girault, Problèmes généralisés de Stokes,, Portugal. Math., 49 (1992), 463.   Google Scholar

[7]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J., 44(119) (1994), 109.   Google Scholar

[8]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods,, Math. Models Methods Appl. Sci., 21 (2011), 2069.  doi: 10.1142/S0218202511005660.  Google Scholar

[9]

A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/12/125015.  Google Scholar

[10]

A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case,, Appl. Anal., ().   Google Scholar

[11]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control Optim., 48 (): 2871.  doi: 10.1137/070704332.  Google Scholar

[12]

F. Boyer and P. Fabrie, "Éléments d'Analyse Pour L'étude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles,", Mathématiques & Applications (Berlin) [Mathematics & Applications], 52 (2006).   Google Scholar

[13]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems,", Progress in Nonlinear Differential Equations and their Applications, 65 (2005).   Google Scholar

[14]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, Detecting a moving obstacle in an ideal fluid by a boundary measurement,, C. R. Math. Acad. Sci. Paris, 346 (2008), 839.  doi: 10.1016/j.crma.2008.06.007.  Google Scholar

[15]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[16]

M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes,, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95.   Google Scholar

[17]

M. Engliš and J. Peetre, A Green's function for the annulus,, Ann. Mat. Pura Appl. (4), 171 (1996), 313.  doi: 10.1007/BF01759391.  Google Scholar

[18]

K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information,, Control Cybernet., 34 (2005), 203.   Google Scholar

[19]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994).   Google Scholar

[20]

S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case,, SIAM J. Control Optim., 39 (2001), 1756.  doi: 10.1137/S0363012900369538.  Google Scholar

[21]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique,", Mathématiques & Applications (Berlin) [Mathematics & Applications], 48 (2005).   Google Scholar

[22]

D. Martin, "Finite Element Library Mélina,", Available from: , ().   Google Scholar

[23]

V. Maz'ya and T. Shaposhnikova, "Theory of Multipliers in Spaces of Differentiable Functions,", Monographs and Studies in Mathematics, 23 (1985).   Google Scholar

[24]

F. Murat and J. Simon, "Sur le Contrôle par un Domaine Géométrique,", Rapport du L.A. 189, (1976).   Google Scholar

[25]

J. Nocedal and S. J. Wright, "Numerical Optimization,", Second edition, (2006).   Google Scholar

[26]

J. R. Shewchuk, "Mesh Generator Triangle,", Available from: , ().   Google Scholar

[27]

J. Simon, Differentiation with respect to the domain in boundary value problems,, Numer. Funct. Anal. Optim., 2 (1980), 649.  doi: 10.1080/01630563.1980.10120631.  Google Scholar

[28]

J. Simon, Second variations for domain optimization problems,, in, 91 (1989), 361.   Google Scholar

[29]

J. Simon, Domain variation for drag in Stokes flow,, in, 159 (1991), 28.  doi: 10.1007/BFb0004434.  Google Scholar

[30]

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization,, SIAM J. Control Optim., 37 (1999), 1251.  doi: 10.1137/S0363012997323230.  Google Scholar

[31]

J. Sokołowski and J.-P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis,", Springer Series in Computational Mathematics, 16 (1992).  doi: 10.1007/978-3-642-58106-9.  Google Scholar

[1]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[2]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[3]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[4]

Masataka Shibata. Asymptotic shape of a solution for the Plasma problem in higher dimensional spaces. Communications on Pure & Applied Analysis, 2003, 2 (2) : 259-275. doi: 10.3934/cpaa.2003.2.259

[5]

Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems & Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003

[6]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[7]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[8]

Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127

[9]

Amin Boumenir. Determining the shape of a solid of revolution. Mathematical Control & Related Fields, 2019, 9 (3) : 509-515. doi: 10.3934/mcrf.2019023

[10]

Pierre-Étienne Druet. Some mathematical problems related to the second order optimal shape of a crystallisation interface. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2443-2463. doi: 10.3934/dcds.2015.35.2443

[11]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[12]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[13]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[14]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[15]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[16]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

[17]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[18]

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008

[19]

Georgi I. Kamberov. Recovering the shape of a surface from the mean curvature. Conference Publications, 1998, 1998 (Special) : 353-359. doi: 10.3934/proc.1998.1998.353

[20]

Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (7)

[Back to Top]