November  2013, 7(4): 1235-1250. doi: 10.3934/ipi.2013.7.1235

Multi-wave imaging in attenuating media

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States

Received  January 2013 Revised  August 2013 Published  November 2013

We consider a mathematical model of thermoacoustic tomography and other multi-wave imaging techniques with variable sound speed and attenuation. We find that a Neumann series reconstruction algorithm, previously studied under the assumption of zero attenuation, still converges if attenuation is sufficiently small. With complete boundary data, we show the inverse problem has a unique solution, and modified time reversal provides a stable reconstruction. We also consider partial boundary data, and in this case study those singularities that can be stably recovered.
Citation: Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems & Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235
References:
[1]

H. Ammari, E. Bretin, J. Garnier and A. Wahab, Time reversal in attenuating acoustic media,, Contemp. Math., 548 (2011), 151.  doi: 10.1090/conm/548/10841.  Google Scholar

[2]

G. Bal, K. Ren, G. Uhlmann and T. Zhou, Quantitative thermo-acoustics and related problems,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055007.  Google Scholar

[3]

P. Burgholzer, F. Camacho-Gonzales, D. Sponseiler, G. Mayer and G. Hendorfer, Information changes and time reversal for diffusion-related periodic fields,, Proc. SPIE, 7177 (2009).  doi: 10.1117/12.809074.  Google Scholar

[4]

B. T. Cox, J. G. Laufer and P. C. Beard, The challenges for photoacoustic imaging,, Proc. SPIE, 7177 (2009).  doi: 10.1117/12.806788.  Google Scholar

[5]

X. L. Deán-Ben, D. Razansky and V. Ntziachristos, The effects of attenuation in optoacoustic signals,, Phys. Med. Biol., 56 (2011), 6129.   Google Scholar

[6]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213.  doi: 10.1137/S0036141002417814.  Google Scholar

[7]

Y. Hristova, Time reversal in thermoacoustic tomography - an error estimate,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/5/055008.  Google Scholar

[8]

Y. Hristova, P. Kuchment and L. Nyugen, On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/5/055006.  Google Scholar

[9]

X. Jin, C. Li and L. Wang, Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,, Med. Phys., 35 (2008), 3205.  doi: 10.1118/1.2938731.  Google Scholar

[10]

K. Kalimeris and O. Scherzer, Photoacoustic imaging in attenuating acoustic media based on strongly causal models,, Math. Meth. Appl. Sci., ().  doi: 10.1002/mma.2756.  Google Scholar

[11]

R. Kowar, Integral equation models for thermoacoustic imaging of acoustic dissipative tissue,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095005.  Google Scholar

[12]

R. Kowar, O. Scherzer and X. Bonnefond, Causality analysis of frequency-dependent wave attenuation,, Math. Meth. in Appl. Sci., 34 (2011), 108.  doi: 10.1002/mma.1344.  Google Scholar

[13]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, Euro. J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[14]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[15]

D. Modgil, M. Anastasio and P. J. La Rivière, Photoacoustic image reconstruction in an attenuating medium using singular value decomposition,, Proc. SPIE, 7177 (2009).   Google Scholar

[16]

S. K. Patch and M. Haltmeier, Thermoacoustic tomography - ultrasound attenuation effects,, IEEE Nucl. Sci. Symp. Conf. Rec., 4 (2006), 2604.   Google Scholar

[17]

J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An effecient Neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed,, SIAM J. Imaging Sciences, 4 (2011), 850.  doi: 10.1137/100817280.  Google Scholar

[18]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, volume 2, (1975).   Google Scholar

[19]

P. J. La Rivière, J. Zhang and M. Anastasio, Image reconstruction in optoacoustic tomography for dispersive acoustic media,, Optics Letters, 31 (2006), 781.   Google Scholar

[20]

H. Roitner and P. Burgholzer, Effecient modeling and compensation of ultrasound attenuation losses in photoacoustic imaging,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/1/015003.  Google Scholar

[21]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075011.  Google Scholar

[22]

D. Tataru, Unqiue continuation for operators with partially analytic coefficients,, J. Math. Pures Appl., 78 (1999), 505.  doi: 10.1016/S0021-7824(99)00016-1.  Google Scholar

[23]

M. Taylor, Pseudodifferential Operators,, Princeton University Press, (1981).   Google Scholar

[24]

J. Tittlefitz, Thermoacoustic tomography in elastic media,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/5/055004.  Google Scholar

[25]

B. Treeby, E. Zhang and B. T. Cox, Photoacoustic tomography in absorbing acoustic media using time reversal,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/11/115003.  Google Scholar

show all references

References:
[1]

H. Ammari, E. Bretin, J. Garnier and A. Wahab, Time reversal in attenuating acoustic media,, Contemp. Math., 548 (2011), 151.  doi: 10.1090/conm/548/10841.  Google Scholar

[2]

G. Bal, K. Ren, G. Uhlmann and T. Zhou, Quantitative thermo-acoustics and related problems,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055007.  Google Scholar

[3]

P. Burgholzer, F. Camacho-Gonzales, D. Sponseiler, G. Mayer and G. Hendorfer, Information changes and time reversal for diffusion-related periodic fields,, Proc. SPIE, 7177 (2009).  doi: 10.1117/12.809074.  Google Scholar

[4]

B. T. Cox, J. G. Laufer and P. C. Beard, The challenges for photoacoustic imaging,, Proc. SPIE, 7177 (2009).  doi: 10.1117/12.806788.  Google Scholar

[5]

X. L. Deán-Ben, D. Razansky and V. Ntziachristos, The effects of attenuation in optoacoustic signals,, Phys. Med. Biol., 56 (2011), 6129.   Google Scholar

[6]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213.  doi: 10.1137/S0036141002417814.  Google Scholar

[7]

Y. Hristova, Time reversal in thermoacoustic tomography - an error estimate,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/5/055008.  Google Scholar

[8]

Y. Hristova, P. Kuchment and L. Nyugen, On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/5/055006.  Google Scholar

[9]

X. Jin, C. Li and L. Wang, Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography,, Med. Phys., 35 (2008), 3205.  doi: 10.1118/1.2938731.  Google Scholar

[10]

K. Kalimeris and O. Scherzer, Photoacoustic imaging in attenuating acoustic media based on strongly causal models,, Math. Meth. Appl. Sci., ().  doi: 10.1002/mma.2756.  Google Scholar

[11]

R. Kowar, Integral equation models for thermoacoustic imaging of acoustic dissipative tissue,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095005.  Google Scholar

[12]

R. Kowar, O. Scherzer and X. Bonnefond, Causality analysis of frequency-dependent wave attenuation,, Math. Meth. in Appl. Sci., 34 (2011), 108.  doi: 10.1002/mma.1344.  Google Scholar

[13]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, Euro. J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[14]

I. Lasiecka, J. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[15]

D. Modgil, M. Anastasio and P. J. La Rivière, Photoacoustic image reconstruction in an attenuating medium using singular value decomposition,, Proc. SPIE, 7177 (2009).   Google Scholar

[16]

S. K. Patch and M. Haltmeier, Thermoacoustic tomography - ultrasound attenuation effects,, IEEE Nucl. Sci. Symp. Conf. Rec., 4 (2006), 2604.   Google Scholar

[17]

J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An effecient Neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed,, SIAM J. Imaging Sciences, 4 (2011), 850.  doi: 10.1137/100817280.  Google Scholar

[18]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, volume 2, (1975).   Google Scholar

[19]

P. J. La Rivière, J. Zhang and M. Anastasio, Image reconstruction in optoacoustic tomography for dispersive acoustic media,, Optics Letters, 31 (2006), 781.   Google Scholar

[20]

H. Roitner and P. Burgholzer, Effecient modeling and compensation of ultrasound attenuation losses in photoacoustic imaging,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/1/015003.  Google Scholar

[21]

P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075011.  Google Scholar

[22]

D. Tataru, Unqiue continuation for operators with partially analytic coefficients,, J. Math. Pures Appl., 78 (1999), 505.  doi: 10.1016/S0021-7824(99)00016-1.  Google Scholar

[23]

M. Taylor, Pseudodifferential Operators,, Princeton University Press, (1981).   Google Scholar

[24]

J. Tittlefitz, Thermoacoustic tomography in elastic media,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/5/055004.  Google Scholar

[25]

B. Treeby, E. Zhang and B. T. Cox, Photoacoustic tomography in absorbing acoustic media using time reversal,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/11/115003.  Google Scholar

[1]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[9]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[10]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[11]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[12]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[15]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[16]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[17]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[18]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[19]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[20]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]