November  2013, 7(4): 1271-1293. doi: 10.3934/ipi.2013.7.1271

Factorization method for the inverse Stokes problem

1. 

Zentrum für Technomathematik, Universität Bremen, 28359 Bremen, Germany, Germany

Received  January 2013 Revised  August 2013 Published  November 2013

We propose an imaging technique for the detection of porous inclusions in a stationary flow based on the Factorization method. The stationary flow is described by the Stokes-Brinkmann equations, a standard model for a flow through a (partially) porous medium, involving the deformation tensor of the flow and the permeability tensor of the porous inclusion. On the boundary of the domain we prescribe Robin boundary conditions that provide the freedom to model, e.g., in- or outlets for the flow. The direct Stokes-Brinkmann problem to find a velocity field and a pressure for given boundary data is a mixed variational problem lacking coercivity due to the indefinite pressure part. It is well-known that indefinite problems are difficult to tackle theoretically using Factorization methods. Interestingly, the Factorization method can nevertheless be applied to this non-coercive problem, as long as one uses data consisting only of velocity measurements. We provide numerical experiments showing the feasibility of the proposed technique.
Citation: Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271
References:
[1]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531.  doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[2]

C. J. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional stokes equations,, Journal of Inverse and Ill-Posed Problems, 15 (2007), 461.  doi: 10.1515/jiip.2007.026.  Google Scholar

[3]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in stokes flows., SIAM Journal on Control and Optimization, 48 (2009), 2871.  doi: 10.1137/070704332.  Google Scholar

[4]

A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case,, Applicable Analysis, 92 (2013), 460.  doi: 10.1080/00036811.2011.628173.  Google Scholar

[5]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods,, M3AS, 21 (2011), 2069.  doi: 10.1142/S0218202511005660.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Springer Verlag, (2008).  doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[8]

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements,, Springer Verlag, (2004).   Google Scholar

[9]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998).   Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems,, Springer Verlag, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[11]

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography,, Inverse Problems, 90 (2003), 65.  doi: 10.1088/0266-5611/19/6/055.  Google Scholar

[12]

N. Hyvönen, H. Hakula and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of impedance tomography,, Inverse Problems and Imaging, 1 (2007), 299.  doi: 10.3934/ipi.2007.1.299.  Google Scholar

[13]

H. Haddar and G. Migliorati, Numerical analysis of the Factorization Method for EIT with piecewise constant uncertain background,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/6/065009.  Google Scholar

[14]

H. Heck, G. Uhlmann and J.-N. Wang, Reconstruction of obstacles immersed in an incompressible fluid,, Inverse Problems and Imaging, 1 (2007), 63.  doi: 10.3934/ipi.2007.1.63.  Google Scholar

[15]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations,, Springer Verlag, (2008).  doi: 10.1007/978-3-540-68545-6.  Google Scholar

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[17]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer Verlag, (2011).  doi: 10.1007/978-1-4419-8474-6.  Google Scholar

[18]

M. Krotkiewski, I. Ligaarden, K.-A. Lie and D. W. Schmid, On the importance of the Stokes-Brinkman equations for computing effective permeability in carbonate karst reservoirs,, Commun. Comput. Phys., 10 (2011), 1315.   Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969).   Google Scholar

[20]

M. Lewicka and S. Müller, The uniform Korn-Poincaré inequality in thin domains,, Annales de l'Institut Henri Poincare - Non Linear Analysis, 28 (2011), 443.  doi: 10.1016/j.anihpc.2011.03.003.  Google Scholar

[21]

W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).   Google Scholar

[22]

C. L. M. H. Navier, Sur les lois du mouvement des fluides,, Mem. Acad. R. Sci. Inst. Fr., 6 (1827), 389.   Google Scholar

[23]

P. Popov, Y. Efendiev and G. Qin, Multiscale modeling and simulations of flows in naturally fractured karst reservoirs,, Commun. Comput. Phys., 6 (2009), 162.  doi: 10.4208/cicp.2009.v6.p162.  Google Scholar

[24]

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511624124.  Google Scholar

[25]

V. Tsiporin, Charakterisierung Eines Gebiets Durch Spektraldaten eines Dirichletproblems zur Stokesgleichung, (German) [Characterization of a Domain via the Spectral data of a Dirichlet Problem for the Stokes Equation],, PhD thesis, (2003).   Google Scholar

[26]

Q. M. Z. Zia and R. Potthast, Flow and shape reconstructions from remote measurements,, Math. Meth. Appl. Sci., 36 (2013), 1171.  doi: 10.1002/mma.2670.  Google Scholar

show all references

References:
[1]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531.  doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[2]

C. J. Alves, R. Kress and A. L. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional stokes equations,, Journal of Inverse and Ill-Posed Problems, 15 (2007), 461.  doi: 10.1515/jiip.2007.026.  Google Scholar

[3]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in stokes flows., SIAM Journal on Control and Optimization, 48 (2009), 2871.  doi: 10.1137/070704332.  Google Scholar

[4]

A. Ballerini, Stable determination of a body immersed in a fluid: The nonlinear stationary case,, Applicable Analysis, 92 (2013), 460.  doi: 10.1080/00036811.2011.628173.  Google Scholar

[5]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods,, M3AS, 21 (2011), 2069.  doi: 10.1142/S0218202511005660.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,, Springer Verlag, (2008).  doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[8]

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements,, Springer Verlag, (2004).   Google Scholar

[9]

L. C. Evans, Partial Differential Equations,, American Mathematical Society, (1998).   Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems,, Springer Verlag, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[11]

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography,, Inverse Problems, 90 (2003), 65.  doi: 10.1088/0266-5611/19/6/055.  Google Scholar

[12]

N. Hyvönen, H. Hakula and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of impedance tomography,, Inverse Problems and Imaging, 1 (2007), 299.  doi: 10.3934/ipi.2007.1.299.  Google Scholar

[13]

H. Haddar and G. Migliorati, Numerical analysis of the Factorization Method for EIT with piecewise constant uncertain background,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/6/065009.  Google Scholar

[14]

H. Heck, G. Uhlmann and J.-N. Wang, Reconstruction of obstacles immersed in an incompressible fluid,, Inverse Problems and Imaging, 1 (2007), 63.  doi: 10.3934/ipi.2007.1.63.  Google Scholar

[15]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations,, Springer Verlag, (2008).  doi: 10.1007/978-3-540-68545-6.  Google Scholar

[16]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[17]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer Verlag, (2011).  doi: 10.1007/978-1-4419-8474-6.  Google Scholar

[18]

M. Krotkiewski, I. Ligaarden, K.-A. Lie and D. W. Schmid, On the importance of the Stokes-Brinkman equations for computing effective permeability in carbonate karst reservoirs,, Commun. Comput. Phys., 10 (2011), 1315.   Google Scholar

[19]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach, (1969).   Google Scholar

[20]

M. Lewicka and S. Müller, The uniform Korn-Poincaré inequality in thin domains,, Annales de l'Institut Henri Poincare - Non Linear Analysis, 28 (2011), 443.  doi: 10.1016/j.anihpc.2011.03.003.  Google Scholar

[21]

W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000).   Google Scholar

[22]

C. L. M. H. Navier, Sur les lois du mouvement des fluides,, Mem. Acad. R. Sci. Inst. Fr., 6 (1827), 389.   Google Scholar

[23]

P. Popov, Y. Efendiev and G. Qin, Multiscale modeling and simulations of flows in naturally fractured karst reservoirs,, Commun. Comput. Phys., 6 (2009), 162.  doi: 10.4208/cicp.2009.v6.p162.  Google Scholar

[24]

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511624124.  Google Scholar

[25]

V. Tsiporin, Charakterisierung Eines Gebiets Durch Spektraldaten eines Dirichletproblems zur Stokesgleichung, (German) [Characterization of a Domain via the Spectral data of a Dirichlet Problem for the Stokes Equation],, PhD thesis, (2003).   Google Scholar

[26]

Q. M. Z. Zia and R. Potthast, Flow and shape reconstructions from remote measurements,, Math. Meth. Appl. Sci., 36 (2013), 1171.  doi: 10.1002/mma.2670.  Google Scholar

[1]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[2]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[3]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[4]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[5]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019045

[6]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[7]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[8]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[9]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[10]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[11]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[12]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[13]

Yang Yang, Jian Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems & Imaging, 2019, 13 (6) : 1309-1325. doi: 10.3934/ipi.2019057

[14]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[15]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[16]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[17]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[18]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

[19]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[20]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]