November  2013, 7(4): 1307-1329. doi: 10.3934/ipi.2013.7.1307

Stability for the acoustic scattering problem for sound-hard scatterers

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via Valerio, 12/1, 34127 Trieste

Received  January 2013 Revised  April 2013 Published  November 2013

We study the stability for the direct acoustic scattering problem with sound-hard scatterers with minimal regularity assumptions on the scatterers. The main tool we use for this purpose is the convergence in the sense of Mosco.
    We obtain uniform decay estimates for scattered fields and we investigate how a sound-hard screen may be approximated by thin sound-hard obstacles.
Citation: Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems & Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

D. Bucur and N. Varchon, Stability of the Neumann problem for variations of boundary,, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 371.  doi: 10.1016/S0764-4442(00)01668-2.  Google Scholar

[3]

D. Bucur and N. Varchon, Boundary variation for a Neumann problem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 807.   Google Scholar

[4]

A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets,, Comm. Partial Differential Equations, 22 (1997), 811.  doi: 10.1080/03605309708821285.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1998).   Google Scholar

[6]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993).  doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101.  doi: 10.1007/s002050100187.  Google Scholar

[8]

A. Giacomini, A stability result for Neumann problems in dimension $N\geq 3$,, J. Convex Anal., 11 (2004), 41.   Google Scholar

[9]

R. Kress, On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation,, Math. Meth. Appl. Sci., 9 (1987), 335.  doi: 10.1002/mma.1670090126.  Google Scholar

[10]

J. Li, H. Liu, L. Rondi and G. Uhlmann, Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak,, preprint, (2013).   Google Scholar

[11]

F. Murat, The Neumann sieve,, in Nonlinear Variational Problems, (1985), 24.   Google Scholar

[12]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finite\-ly many far-field measurements,, Indiana Univ. Math. J., 52 (2003), 1631.  doi: 10.1512/iumj.2003.52.2394.  Google Scholar

[13]

L. Rondi, Unique continuation from Cauchy data in unknown non-smooth domains,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5 (2006), 189.   Google Scholar

[14]

C. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains,, Springer-Verlag, (1975).   Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

D. Bucur and N. Varchon, Stability of the Neumann problem for variations of boundary,, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 371.  doi: 10.1016/S0764-4442(00)01668-2.  Google Scholar

[3]

D. Bucur and N. Varchon, Boundary variation for a Neumann problem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 807.   Google Scholar

[4]

A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets,, Comm. Partial Differential Equations, 22 (1997), 811.  doi: 10.1080/03605309708821285.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1998).   Google Scholar

[6]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993).  doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101.  doi: 10.1007/s002050100187.  Google Scholar

[8]

A. Giacomini, A stability result for Neumann problems in dimension $N\geq 3$,, J. Convex Anal., 11 (2004), 41.   Google Scholar

[9]

R. Kress, On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation,, Math. Meth. Appl. Sci., 9 (1987), 335.  doi: 10.1002/mma.1670090126.  Google Scholar

[10]

J. Li, H. Liu, L. Rondi and G. Uhlmann, Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak,, preprint, (2013).   Google Scholar

[11]

F. Murat, The Neumann sieve,, in Nonlinear Variational Problems, (1985), 24.   Google Scholar

[12]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finite\-ly many far-field measurements,, Indiana Univ. Math. J., 52 (2003), 1631.  doi: 10.1512/iumj.2003.52.2394.  Google Scholar

[13]

L. Rondi, Unique continuation from Cauchy data in unknown non-smooth domains,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5 (2006), 189.   Google Scholar

[14]

C. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains,, Springer-Verlag, (1975).   Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[19]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]