November  2013, 7(4): 1307-1329. doi: 10.3934/ipi.2013.7.1307

Stability for the acoustic scattering problem for sound-hard scatterers

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, via Valerio, 12/1, 34127 Trieste

Received  January 2013 Revised  April 2013 Published  November 2013

We study the stability for the direct acoustic scattering problem with sound-hard scatterers with minimal regularity assumptions on the scatterers. The main tool we use for this purpose is the convergence in the sense of Mosco.
    We obtain uniform decay estimates for scattered fields and we investigate how a sound-hard screen may be approximated by thin sound-hard obstacles.
Citation: Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems & Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[2]

D. Bucur and N. Varchon, Stability of the Neumann problem for variations of boundary,, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 371. doi: 10.1016/S0764-4442(00)01668-2. Google Scholar

[3]

D. Bucur and N. Varchon, Boundary variation for a Neumann problem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 807. Google Scholar

[4]

A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets,, Comm. Partial Differential Equations, 22 (1997), 811. doi: 10.1080/03605309708821285. Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1998). Google Scholar

[6]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187. Google Scholar

[8]

A. Giacomini, A stability result for Neumann problems in dimension $N\geq 3$,, J. Convex Anal., 11 (2004), 41. Google Scholar

[9]

R. Kress, On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation,, Math. Meth. Appl. Sci., 9 (1987), 335. doi: 10.1002/mma.1670090126. Google Scholar

[10]

J. Li, H. Liu, L. Rondi and G. Uhlmann, Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak,, preprint, (2013). Google Scholar

[11]

F. Murat, The Neumann sieve,, in Nonlinear Variational Problems, (1985), 24. Google Scholar

[12]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finite\-ly many far-field measurements,, Indiana Univ. Math. J., 52 (2003), 1631. doi: 10.1512/iumj.2003.52.2394. Google Scholar

[13]

L. Rondi, Unique continuation from Cauchy data in unknown non-smooth domains,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5 (2006), 189. Google Scholar

[14]

C. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains,, Springer-Verlag, (1975). Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[2]

D. Bucur and N. Varchon, Stability of the Neumann problem for variations of boundary,, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 371. doi: 10.1016/S0764-4442(00)01668-2. Google Scholar

[3]

D. Bucur and N. Varchon, Boundary variation for a Neumann problem,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 807. Google Scholar

[4]

A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets,, Comm. Partial Differential Equations, 22 (1997), 811. doi: 10.1080/03605309708821285. Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, Springer-Verlag, (1998). Google Scholar

[6]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101. doi: 10.1007/s002050100187. Google Scholar

[8]

A. Giacomini, A stability result for Neumann problems in dimension $N\geq 3$,, J. Convex Anal., 11 (2004), 41. Google Scholar

[9]

R. Kress, On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation,, Math. Meth. Appl. Sci., 9 (1987), 335. doi: 10.1002/mma.1670090126. Google Scholar

[10]

J. Li, H. Liu, L. Rondi and G. Uhlmann, Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak,, preprint, (2013). Google Scholar

[11]

F. Murat, The Neumann sieve,, in Nonlinear Variational Problems, (1985), 24. Google Scholar

[12]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finite\-ly many far-field measurements,, Indiana Univ. Math. J., 52 (2003), 1631. doi: 10.1512/iumj.2003.52.2394. Google Scholar

[13]

L. Rondi, Unique continuation from Cauchy data in unknown non-smooth domains,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5 (2006), 189. Google Scholar

[14]

C. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains,, Springer-Verlag, (1975). Google Scholar

[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[3]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[4]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[5]

Marcone C. Pereira, Ricardo P. Silva. Error estimates for a Neumann problem in highly oscillating thin domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 803-817. doi: 10.3934/dcds.2013.33.803

[6]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[7]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[8]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[9]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[10]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[11]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[12]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[13]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[14]

Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469

[15]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[16]

Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483

[17]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[18]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[19]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[20]

Christophe Pallard. Growth estimates and uniform decay for a collisionless plasma. Kinetic & Related Models, 2011, 4 (2) : 549-567. doi: 10.3934/krm.2011.4.549

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]