November  2013, 7(4): 1367-1377. doi: 10.3934/ipi.2013.7.1367

Instability of the linearized problem in multiwave tomography of recovery both the source and the speed

1. 

Department of Mathematics, Purdue University, 150 N University Street, West Lafayette, IN 47907

2. 

Department of Mathematics, University of Washington, Seattle, WA 98195-4350

Received  January 2013 Revised  October 2013 Published  November 2013

In this paper we consider the linearized problem of recovering both the sound speed and the thermal absorption arising in thermoacoustic and photoacoustic tomography. We show that the problem is unstable in any scale of Sobolev spaces.
Citation: Plamen Stefanov, Gunther Uhlmann. Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. Inverse Problems & Imaging, 2013, 7 (4) : 1367-1377. doi: 10.3934/ipi.2013.7.1367
References:
[1]

G. Ambartsoumian, R. Gouia-Zarrad and M. A. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105015.  Google Scholar

[2]

M. Agranovsky, P. Kuchment and L. Kunyansky, On Reconstruction Formulas and Algorithms for the Thermoacoustic Tomography,, Photoacoustic Imaging and Spectroscopy, (2009), 89.  doi: 10.1201/9781420059922.ch8.  Google Scholar

[3]

D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions,, SIAM J. Appl. Math., 68 (2007), 392.  doi: 10.1137/070682137.  Google Scholar

[4]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213.  doi: 10.1137/S0036141002417814.  Google Scholar

[5]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.  doi: 10.1088/0266-5611/22/3/012.  Google Scholar

[6]

D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, in Photoacoustic Imaging and Spectroscopy, (2009).  doi: 10.1201/9781420059922.pt3.  Google Scholar

[7]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/5/055006.  Google Scholar

[8]

Y. Hristova, Time reversal in thermoacoustic tomography-an error estimate,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/5/055008.  Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf, Thermoacoustic computed tomography with large planar receivers,, Inverse Problems, 20 (2004), 1663.  doi: 10.1088/0266-5611/20/5/021.  Google Scholar

[10]

M. Haltmeier, T. Schuster and O. Scherzer, Filtered backprojection for thermoacoustic computed tomography in spherical geometry,, Math. Methods Appl. Sci., 28 (2005), 1919.  doi: 10.1002/mma.648.  Google Scholar

[11]

V. Isakov, Inverse Problems for Partial Differential Equations,, second ed., (2006).   Google Scholar

[12]

J. Jose, Rene G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen and S. Manohar, Speed-of-sound compensated photoacoustic tomography for accurate imaging,, , ().  doi: 10.1118/1.4764911.  Google Scholar

[13]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[14]

R. A Kruger, W. L. Kiser, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography using a conventional linear transducer array,, Med. Phys., 30 (2003), 856.  doi: 10.1118/1.1565340.  Google Scholar

[15]

R. A. Kruger, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography-technical considerations,, Med. Phys., 26 (1999), 1832.  doi: 10.1118/1.598688.  Google Scholar

[16]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[17]

S. K. Patch, Thermoacoustic tomography - consistency conditions and the partial scan problem,, Physics in Medicine and Biology, 49 (2004), 2305.  doi: 10.1201/9781420059922.ch9.  Google Scholar

[18]

J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An efficient neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed,, SIAM J. Imaging Sciences, (2011), 850.  doi: 10.1137/100817280.  Google Scholar

[19]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields,, Inverse and Ill-posed Problems Series, (1994).  doi: 10.1515/9783110900095.  Google Scholar

[20]

P. Stefanov and G. Uhlmann, Linearizing non-linear inverse problems and an application to inverse backscattering,, J. Funct. Anal., 256 (2009), 2842.  doi: 10.1016/j.jfa.2008.10.017.  Google Scholar

[21]

______, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075011.  Google Scholar

[22]

______, Thermoacoustic tomography arising in brain imaging,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/4/045004.  Google Scholar

[23]

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound,, MSRI Publications, 60 (2012), 271.   Google Scholar

[24]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications,, Trans. Amer. Math. Soc., 365 (2013), 5737.  doi: 10.1090/S0002-9947-2013-05703-0.  Google Scholar

[25]

D. Tataru, Unique continuation problems for partial differential equations,, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 239.  doi: 10.1007/978-1-4684-9375-7_8.  Google Scholar

[26]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer and P. C. Beard, Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,, Journal of Biomedical Optics, 16 (2011).  doi: 10.1117/1.3619139.  Google Scholar

[27]

Y. Xu, P. Kuchment and G. Ambartsoumian, Reconstructions in limited view thermoacoustic tomography,, Medical Physics, 31 (2004), 724.  doi: 10.1118/1.1644531.  Google Scholar

[28]

M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine,, Review of Scientific Instruments, 77 (2006).  doi: 10.1063/1.2195024.  Google Scholar

[29]

Z. Yuan and H. Jiang, Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,, Opt. Lett., 34 (2009), 1714.  doi: 10.1364/OL.34.001714.  Google Scholar

[30]

Z. Yuan, Q. Zhang and H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,, Opt. Express, 14 (2006), 6749.  doi: 10.1364/OE.14.006749.  Google Scholar

[31]

J. Zhang and M. A. Anastasio, Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,, Proc. SPIE, 6086 (2006).  doi: 10.1117/12.647665.  Google Scholar

show all references

References:
[1]

G. Ambartsoumian, R. Gouia-Zarrad and M. A. Lewis, Inversion of the circular Radon transform on an annulus,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/10/105015.  Google Scholar

[2]

M. Agranovsky, P. Kuchment and L. Kunyansky, On Reconstruction Formulas and Algorithms for the Thermoacoustic Tomography,, Photoacoustic Imaging and Spectroscopy, (2009), 89.  doi: 10.1201/9781420059922.ch8.  Google Scholar

[3]

D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions,, SIAM J. Appl. Math., 68 (2007), 392.  doi: 10.1137/070682137.  Google Scholar

[4]

D. Finch, S. K. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213.  doi: 10.1137/S0036141002417814.  Google Scholar

[5]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.  doi: 10.1088/0266-5611/22/3/012.  Google Scholar

[6]

D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, in Photoacoustic Imaging and Spectroscopy, (2009).  doi: 10.1201/9781420059922.pt3.  Google Scholar

[7]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/5/055006.  Google Scholar

[8]

Y. Hristova, Time reversal in thermoacoustic tomography-an error estimate,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/5/055008.  Google Scholar

[9]

M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf, Thermoacoustic computed tomography with large planar receivers,, Inverse Problems, 20 (2004), 1663.  doi: 10.1088/0266-5611/20/5/021.  Google Scholar

[10]

M. Haltmeier, T. Schuster and O. Scherzer, Filtered backprojection for thermoacoustic computed tomography in spherical geometry,, Math. Methods Appl. Sci., 28 (2005), 1919.  doi: 10.1002/mma.648.  Google Scholar

[11]

V. Isakov, Inverse Problems for Partial Differential Equations,, second ed., (2006).   Google Scholar

[12]

J. Jose, Rene G. H. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen and S. Manohar, Speed-of-sound compensated photoacoustic tomography for accurate imaging,, , ().  doi: 10.1118/1.4764911.  Google Scholar

[13]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.  doi: 10.1017/S0956792508007353.  Google Scholar

[14]

R. A Kruger, W. L. Kiser, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography using a conventional linear transducer array,, Med. Phys., 30 (2003), 856.  doi: 10.1118/1.1565340.  Google Scholar

[15]

R. A. Kruger, D. R. Reinecke and G. A. Kruger, Thermoacoustic computed tomography-technical considerations,, Med. Phys., 26 (1999), 1832.  doi: 10.1118/1.598688.  Google Scholar

[16]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators,, J. Math. Pures Appl., 65 (1986), 149.   Google Scholar

[17]

S. K. Patch, Thermoacoustic tomography - consistency conditions and the partial scan problem,, Physics in Medicine and Biology, 49 (2004), 2305.  doi: 10.1201/9781420059922.ch9.  Google Scholar

[18]

J. Qian, P. Stefanov, G. Uhlmann and H. Zhao, An efficient neumann-series based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed,, SIAM J. Imaging Sciences, (2011), 850.  doi: 10.1137/100817280.  Google Scholar

[19]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields,, Inverse and Ill-posed Problems Series, (1994).  doi: 10.1515/9783110900095.  Google Scholar

[20]

P. Stefanov and G. Uhlmann, Linearizing non-linear inverse problems and an application to inverse backscattering,, J. Funct. Anal., 256 (2009), 2842.  doi: 10.1016/j.jfa.2008.10.017.  Google Scholar

[21]

______, Thermoacoustic tomography with variable sound speed,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075011.  Google Scholar

[22]

______, Thermoacoustic tomography arising in brain imaging,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/4/045004.  Google Scholar

[23]

P. Stefanov and G. Uhlmann, Multi-wave methods via ultrasound,, MSRI Publications, 60 (2012), 271.   Google Scholar

[24]

P. Stefanov and G. Uhlmann, Recovery of a source term or a speed with one measurement and applications,, Trans. Amer. Math. Soc., 365 (2013), 5737.  doi: 10.1090/S0002-9947-2013-05703-0.  Google Scholar

[25]

D. Tataru, Unique continuation problems for partial differential equations,, Geometric Methods in Inverse Problems and PDE Control, 137 (2004), 239.  doi: 10.1007/978-1-4684-9375-7_8.  Google Scholar

[26]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer and P. C. Beard, Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,, Journal of Biomedical Optics, 16 (2011).  doi: 10.1117/1.3619139.  Google Scholar

[27]

Y. Xu, P. Kuchment and G. Ambartsoumian, Reconstructions in limited view thermoacoustic tomography,, Medical Physics, 31 (2004), 724.  doi: 10.1118/1.1644531.  Google Scholar

[28]

M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine,, Review of Scientific Instruments, 77 (2006).  doi: 10.1063/1.2195024.  Google Scholar

[29]

Z. Yuan and H. Jiang, Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography,, Opt. Lett., 34 (2009), 1714.  doi: 10.1364/OL.34.001714.  Google Scholar

[30]

Z. Yuan, Q. Zhang and H. Jiang, Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography,, Opt. Express, 14 (2006), 6749.  doi: 10.1364/OE.14.006749.  Google Scholar

[31]

J. Zhang and M. A. Anastasio, Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,, Proc. SPIE, 6086 (2006).  doi: 10.1117/12.647665.  Google Scholar

[1]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[5]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[10]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[11]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]