\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Reconstruction of penetrable grating profiles

Abstract Related Papers Cited by
  • This paper is concerned with the inverse problem of recovering a penetrable grating profile in the TM-polarization case from the scattered field measured only above the structure, corresponding to a countably infinite number of incident quasi-periodic waves. A sampling method is proposed to reconstruct the penetrable grating profile based on a near field linear operator equation in $l^2$. The mathematical justification of the sampling method is established and numerical results are presented to show the validity of the inversion algorithm.
    Mathematics Subject Classification: Primary: 35R30, 35J05; Secondary: 78A46, 78M50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Arens and N. Grinberg, A complete factorization method for scattering by periodic surfaces, Computing, 50 (2005), 111-132.doi: 10.1007/s00607-004-0092-0.

    [2]

    T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Problems, 519 (2003), 1195-1211.doi: 10.1088/0266-5611/19/5/311.

    [3]

    G. Bruckner and J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles, Inverse Problems, 19 (2003), 315-329.doi: 10.1088/0266-5611/19/2/305.

    [4]

    G. Bruckner and J. Elschner, The numerical solution of an inverse periodic transmission problem, Math. Meth. Appl. Sci., 28 (2005), 757-778.doi: 10.1002/mma.588.

    [5]

    A-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Meth. Appl. Sci., 17 (1994), 305-338.doi: 10.1002/mma.1670170502.

    [6]

    D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.

    [7]

    D. Colton, R. Kress and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math., 81 (2007), 269-298.doi: 10.1016/S0377-0427(97)00065-4.

    [8]

    J. Elschner, G. C. Hsiao and A. Rathsfeld, Grating profile reconstruction based on finite elements and optimization techniques, SIAM J. Appl. Math., 64 (2003), 525-545.doi: 10.1137/S0036139902420018.

    [9]

    F. Hettlich, Iterative regularization schemes in inverse scattering by periodic structures, Inverse Problems, 18 (2002), 701-714.doi: 10.1088/0266-5611/18/3/311.

    [10]

    G. Hu, F. Qu and B. Zhang, A linear sampling method for inverse problems of diffraction gratings of mixed type, Math. Methods Appl. Sci., 35 (2012), 1047-1066.doi: 10.1002/mma.2511.

    [11]

    G. Hu and B. Zhang, The linear sampling method for the inverse electromagnetic scattering by a partially coated bi-periodic structure, Math. Methods Appl. Sci., 34 (2011), 509-519.doi: 10.1002/mma.1375.

    [12]

    K. Ito and F. Reitich, A high-order perturbation approach to profile reconstruction: I. Perfectly conducting grating, Inverse Problems, 15 (1999), 1067-1085.doi: 10.1088/0266-5611/15/4/315.

    [13]

    A. Lechleiter, Imaging of periodic dielectrics, BIT Numer. Math., 50 (2010), 59-83.doi: 10.1007/s10543-010-0255-7.

    [14]

    A. Malcolm and D. P. Nicholls, A boundary perturbation method for recovering interface shape in layered media, Inverse Problems, 27 (2011), 095009 (18pp).doi: 10.1088/0266-5611/27/9/095009.

    [15]

    G. Schmidt, Integral equations for conical diffraction by coated gratings, J. Integral Equat. Appl., 23 (2011), 71-112.doi: 10.1216/JIE-2011-23-1-71.

    [16]

    J. Yang and B. Zhang, Uniqueness results in the inverse scattering problem for periodic structures, Math. Methods Appl. Sci., 35 (2012), 828-838.doi: 10.1002/mma.1609.

    [17]

    J. Yang, B. Zhang and R. Zhang, A sampling method for the inverse transmission problem for periodic media, Inverse Problems, 28 (2012), 035004 (17pp).doi: 10.1088/0266-5611/28/3/035004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return