November  2013, 7(4): 1393-1407. doi: 10.3934/ipi.2013.7.1393

Reconstruction of penetrable grating profiles

1. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

2. 

LSEC and Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, China

Received  September 2012 Revised  June 2013 Published  November 2013

This paper is concerned with the inverse problem of recovering a penetrable grating profile in the TM-polarization case from the scattered field measured only above the structure, corresponding to a countably infinite number of incident quasi-periodic waves. A sampling method is proposed to reconstruct the penetrable grating profile based on a near field linear operator equation in $l^2$. The mathematical justification of the sampling method is established and numerical results are presented to show the validity of the inversion algorithm.
Citation: Jiaqing Yang, Bo Zhang, Ruming Zhang. Reconstruction of penetrable grating profiles. Inverse Problems and Imaging, 2013, 7 (4) : 1393-1407. doi: 10.3934/ipi.2013.7.1393
References:
[1]

T. Arens and N. Grinberg, A complete factorization method for scattering by periodic surfaces, Computing, 50 (2005), 111-132. doi: 10.1007/s00607-004-0092-0.

[2]

T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Problems, 519 (2003), 1195-1211. doi: 10.1088/0266-5611/19/5/311.

[3]

G. Bruckner and J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles, Inverse Problems, 19 (2003), 315-329. doi: 10.1088/0266-5611/19/2/305.

[4]

G. Bruckner and J. Elschner, The numerical solution of an inverse periodic transmission problem, Math. Meth. Appl. Sci., 28 (2005), 757-778. doi: 10.1002/mma.588.

[5]

A-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Meth. Appl. Sci., 17 (1994), 305-338. doi: 10.1002/mma.1670170502.

[6]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.

[7]

D. Colton, R. Kress and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math., 81 (2007), 269-298. doi: 10.1016/S0377-0427(97)00065-4.

[8]

J. Elschner, G. C. Hsiao and A. Rathsfeld, Grating profile reconstruction based on finite elements and optimization techniques, SIAM J. Appl. Math., 64 (2003), 525-545. doi: 10.1137/S0036139902420018.

[9]

F. Hettlich, Iterative regularization schemes in inverse scattering by periodic structures, Inverse Problems, 18 (2002), 701-714. doi: 10.1088/0266-5611/18/3/311.

[10]

G. Hu, F. Qu and B. Zhang, A linear sampling method for inverse problems of diffraction gratings of mixed type, Math. Methods Appl. Sci., 35 (2012), 1047-1066. doi: 10.1002/mma.2511.

[11]

G. Hu and B. Zhang, The linear sampling method for the inverse electromagnetic scattering by a partially coated bi-periodic structure, Math. Methods Appl. Sci., 34 (2011), 509-519. doi: 10.1002/mma.1375.

[12]

K. Ito and F. Reitich, A high-order perturbation approach to profile reconstruction: I. Perfectly conducting grating, Inverse Problems, 15 (1999), 1067-1085. doi: 10.1088/0266-5611/15/4/315.

[13]

A. Lechleiter, Imaging of periodic dielectrics, BIT Numer. Math., 50 (2010), 59-83. doi: 10.1007/s10543-010-0255-7.

[14]

A. Malcolm and D. P. Nicholls, A boundary perturbation method for recovering interface shape in layered media, Inverse Problems, 27 (2011), 095009 (18pp). doi: 10.1088/0266-5611/27/9/095009.

[15]

G. Schmidt, Integral equations for conical diffraction by coated gratings, J. Integral Equat. Appl., 23 (2011), 71-112. doi: 10.1216/JIE-2011-23-1-71.

[16]

J. Yang and B. Zhang, Uniqueness results in the inverse scattering problem for periodic structures, Math. Methods Appl. Sci., 35 (2012), 828-838. doi: 10.1002/mma.1609.

[17]

J. Yang, B. Zhang and R. Zhang, A sampling method for the inverse transmission problem for periodic media, Inverse Problems, 28 (2012), 035004 (17pp). doi: 10.1088/0266-5611/28/3/035004.

show all references

References:
[1]

T. Arens and N. Grinberg, A complete factorization method for scattering by periodic surfaces, Computing, 50 (2005), 111-132. doi: 10.1007/s00607-004-0092-0.

[2]

T. Arens and A. Kirsch, The factorization method in inverse scattering from periodic structures, Inverse Problems, 519 (2003), 1195-1211. doi: 10.1088/0266-5611/19/5/311.

[3]

G. Bruckner and J. Elschner, A two-step algorithm for the reconstruction of perfectly reflecting periodic profiles, Inverse Problems, 19 (2003), 315-329. doi: 10.1088/0266-5611/19/2/305.

[4]

G. Bruckner and J. Elschner, The numerical solution of an inverse periodic transmission problem, Math. Meth. Appl. Sci., 28 (2005), 757-778. doi: 10.1002/mma.588.

[5]

A-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Meth. Appl. Sci., 17 (1994), 305-338. doi: 10.1002/mma.1670170502.

[6]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New York, 1983.

[7]

D. Colton, R. Kress and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math., 81 (2007), 269-298. doi: 10.1016/S0377-0427(97)00065-4.

[8]

J. Elschner, G. C. Hsiao and A. Rathsfeld, Grating profile reconstruction based on finite elements and optimization techniques, SIAM J. Appl. Math., 64 (2003), 525-545. doi: 10.1137/S0036139902420018.

[9]

F. Hettlich, Iterative regularization schemes in inverse scattering by periodic structures, Inverse Problems, 18 (2002), 701-714. doi: 10.1088/0266-5611/18/3/311.

[10]

G. Hu, F. Qu and B. Zhang, A linear sampling method for inverse problems of diffraction gratings of mixed type, Math. Methods Appl. Sci., 35 (2012), 1047-1066. doi: 10.1002/mma.2511.

[11]

G. Hu and B. Zhang, The linear sampling method for the inverse electromagnetic scattering by a partially coated bi-periodic structure, Math. Methods Appl. Sci., 34 (2011), 509-519. doi: 10.1002/mma.1375.

[12]

K. Ito and F. Reitich, A high-order perturbation approach to profile reconstruction: I. Perfectly conducting grating, Inverse Problems, 15 (1999), 1067-1085. doi: 10.1088/0266-5611/15/4/315.

[13]

A. Lechleiter, Imaging of periodic dielectrics, BIT Numer. Math., 50 (2010), 59-83. doi: 10.1007/s10543-010-0255-7.

[14]

A. Malcolm and D. P. Nicholls, A boundary perturbation method for recovering interface shape in layered media, Inverse Problems, 27 (2011), 095009 (18pp). doi: 10.1088/0266-5611/27/9/095009.

[15]

G. Schmidt, Integral equations for conical diffraction by coated gratings, J. Integral Equat. Appl., 23 (2011), 71-112. doi: 10.1216/JIE-2011-23-1-71.

[16]

J. Yang and B. Zhang, Uniqueness results in the inverse scattering problem for periodic structures, Math. Methods Appl. Sci., 35 (2012), 828-838. doi: 10.1002/mma.1609.

[17]

J. Yang, B. Zhang and R. Zhang, A sampling method for the inverse transmission problem for periodic media, Inverse Problems, 28 (2012), 035004 (17pp). doi: 10.1088/0266-5611/28/3/035004.

[1]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[2]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[3]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[4]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[5]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[6]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[7]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[8]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[9]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[10]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[11]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[12]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[13]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[14]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[15]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[16]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[17]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[18]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[19]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[20]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]