February  2013, 7(1): 183-197. doi: 10.3934/ipi.2013.7.183

Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D

1. 

Department of Mathematical Sciences, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland, Finland, Finland

Received  June 2012 Revised  November 2012 Published  February 2013

We investigate two inverse scattering problems for the nonlinear Schrödinger equation $$ -\Delta u(x) + h(x,|u(x)|)u(x) = k^{2}u(x), \quad x \in \mathbb{R}^2, $$ where $h$ is a very general and possibly singular combination of potentials. The method of Born approximation is applied for the recovery of local singularities and jumps from fixed angle scattering and backscattering data.
Citation: Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).

[2]

G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451.

[3]

L. Grafakos, "Classical and Modern Fourier Analysis,", Pearson Education, (2004).

[4]

R. P. Kanwal, "Generalized Functions. Theory and Applications,", $3^{rd}$ edition, (2004). doi: 10.1007/978-0-8176-8174-6.

[5]

A. Lechleiter, Explicit characterization of the support of non-linear inclusions,, Inverse Probl. Imaging, 5 (2011), 675. doi: 10.3934/ipi.2011.5.675.

[6]

K. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,, J. Opt. Soc. Am. B, 5 (1988), 571.

[7]

K. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,, Phys. Rev. B, 39 (1989), 3590.

[8]

P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697. doi: 10.1081/PDE-100001768.

[9]

L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697. doi: 10.1137/S0036141096305796.

[10]

L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Laplacian and recovery of singularities of a multi-dimensional scattering potential,, Inverse Problems, 17 (2001), 1321. doi: 10.1088/0266-5611/17/5/306.

[11]

L. Päivärinta and V. Serov, An n-dimensional Borg-Levinson theorem for singular potentials,, Adv. Appl. Math., 29 (2002), 509. doi: 10.1016/S0196-8858(02)00027-1.

[12]

R. T. Prosser, Formal solutions of inverse scattering problems. IV. Error estimates,, J. Math. Phys., 23 (1982), 2127. doi: 10.1063/1.525267.

[13]

J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625. doi: 10.1088/0266-5611/23/2/010.

[14]

A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721. doi: 10.1081/PDE-100107457.

[15]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67. doi: 10.1081/PDE-200044450.

[16]

H. Schürmann and R. Schmoldt, On the theory of reflectivity and transmissivity of a lossless nonlinear dielectric slab,, Z. Phys. B, 92 (1993), 179.

[17]

H. Schürmann and R. Schmoldt, Optical response of a nonlinear absorbing dielectric film,, Opt. Lett., 21 (1996), 387.

[18]

V. Serov, Reconstruction of singularities of the potential in the two-dimensional Schrödinger operator from fixed-angle scattering data. (Russian),, Dokl. Akad. Nauk, 385 (2002), 160.

[19]

V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/6/065002.

[20]

V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions,, J. Phys. A: Math. Theor., 43 (2010). doi: 10.1088/1751-8113/43/32/325206.

[21]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,, J. Math. Phys. 53 (2012) 123522., 53 (2012). doi: 10.1063/1.4769825.

[22]

P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55. doi: 10.1080/03605309208820834.

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).

[2]

G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451.

[3]

L. Grafakos, "Classical and Modern Fourier Analysis,", Pearson Education, (2004).

[4]

R. P. Kanwal, "Generalized Functions. Theory and Applications,", $3^{rd}$ edition, (2004). doi: 10.1007/978-0-8176-8174-6.

[5]

A. Lechleiter, Explicit characterization of the support of non-linear inclusions,, Inverse Probl. Imaging, 5 (2011), 675. doi: 10.3934/ipi.2011.5.675.

[6]

K. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,, J. Opt. Soc. Am. B, 5 (1988), 571.

[7]

K. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,, Phys. Rev. B, 39 (1989), 3590.

[8]

P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697. doi: 10.1081/PDE-100001768.

[9]

L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697. doi: 10.1137/S0036141096305796.

[10]

L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Laplacian and recovery of singularities of a multi-dimensional scattering potential,, Inverse Problems, 17 (2001), 1321. doi: 10.1088/0266-5611/17/5/306.

[11]

L. Päivärinta and V. Serov, An n-dimensional Borg-Levinson theorem for singular potentials,, Adv. Appl. Math., 29 (2002), 509. doi: 10.1016/S0196-8858(02)00027-1.

[12]

R. T. Prosser, Formal solutions of inverse scattering problems. IV. Error estimates,, J. Math. Phys., 23 (1982), 2127. doi: 10.1063/1.525267.

[13]

J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625. doi: 10.1088/0266-5611/23/2/010.

[14]

A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721. doi: 10.1081/PDE-100107457.

[15]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67. doi: 10.1081/PDE-200044450.

[16]

H. Schürmann and R. Schmoldt, On the theory of reflectivity and transmissivity of a lossless nonlinear dielectric slab,, Z. Phys. B, 92 (1993), 179.

[17]

H. Schürmann and R. Schmoldt, Optical response of a nonlinear absorbing dielectric film,, Opt. Lett., 21 (1996), 387.

[18]

V. Serov, Reconstruction of singularities of the potential in the two-dimensional Schrödinger operator from fixed-angle scattering data. (Russian),, Dokl. Akad. Nauk, 385 (2002), 160.

[19]

V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/6/065002.

[20]

V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions,, J. Phys. A: Math. Theor., 43 (2010). doi: 10.1088/1751-8113/43/32/325206.

[21]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,, J. Math. Phys. 53 (2012) 123522., 53 (2012). doi: 10.1063/1.4769825.

[22]

P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55. doi: 10.1080/03605309208820834.

[1]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[2]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[3]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[4]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[5]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[6]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[7]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[8]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[9]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[10]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[11]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[12]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[13]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[14]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[15]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[16]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[17]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[18]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[19]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[20]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]