February  2013, 7(1): 183-197. doi: 10.3934/ipi.2013.7.183

Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D

1. 

Department of Mathematical Sciences, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland, Finland, Finland

Received  June 2012 Revised  November 2012 Published  February 2013

We investigate two inverse scattering problems for the nonlinear Schrödinger equation $$ -\Delta u(x) + h(x,|u(x)|)u(x) = k^{2}u(x), \quad x \in \mathbb{R}^2, $$ where $h$ is a very general and possibly singular combination of potentials. The method of Born approximation is applied for the recovery of local singularities and jumps from fixed angle scattering and backscattering data.
Citation: Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451.   Google Scholar

[3]

L. Grafakos, "Classical and Modern Fourier Analysis,", Pearson Education, (2004).   Google Scholar

[4]

R. P. Kanwal, "Generalized Functions. Theory and Applications,", $3^{rd}$ edition, (2004).  doi: 10.1007/978-0-8176-8174-6.  Google Scholar

[5]

A. Lechleiter, Explicit characterization of the support of non-linear inclusions,, Inverse Probl. Imaging, 5 (2011), 675.  doi: 10.3934/ipi.2011.5.675.  Google Scholar

[6]

K. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,, J. Opt. Soc. Am. B, 5 (1988), 571.   Google Scholar

[7]

K. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,, Phys. Rev. B, 39 (1989), 3590.   Google Scholar

[8]

P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697.  doi: 10.1081/PDE-100001768.  Google Scholar

[9]

L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697.  doi: 10.1137/S0036141096305796.  Google Scholar

[10]

L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Laplacian and recovery of singularities of a multi-dimensional scattering potential,, Inverse Problems, 17 (2001), 1321.  doi: 10.1088/0266-5611/17/5/306.  Google Scholar

[11]

L. Päivärinta and V. Serov, An n-dimensional Borg-Levinson theorem for singular potentials,, Adv. Appl. Math., 29 (2002), 509.  doi: 10.1016/S0196-8858(02)00027-1.  Google Scholar

[12]

R. T. Prosser, Formal solutions of inverse scattering problems. IV. Error estimates,, J. Math. Phys., 23 (1982), 2127.  doi: 10.1063/1.525267.  Google Scholar

[13]

J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625.  doi: 10.1088/0266-5611/23/2/010.  Google Scholar

[14]

A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721.  doi: 10.1081/PDE-100107457.  Google Scholar

[15]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67.  doi: 10.1081/PDE-200044450.  Google Scholar

[16]

H. Schürmann and R. Schmoldt, On the theory of reflectivity and transmissivity of a lossless nonlinear dielectric slab,, Z. Phys. B, 92 (1993), 179.   Google Scholar

[17]

H. Schürmann and R. Schmoldt, Optical response of a nonlinear absorbing dielectric film,, Opt. Lett., 21 (1996), 387.   Google Scholar

[18]

V. Serov, Reconstruction of singularities of the potential in the two-dimensional Schrödinger operator from fixed-angle scattering data. (Russian),, Dokl. Akad. Nauk, 385 (2002), 160.   Google Scholar

[19]

V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/6/065002.  Google Scholar

[20]

V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/32/325206.  Google Scholar

[21]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,, J. Math. Phys. 53 (2012) 123522., 53 (2012).  doi: 10.1063/1.4769825.  Google Scholar

[22]

P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55.  doi: 10.1080/03605309208820834.  Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451.   Google Scholar

[3]

L. Grafakos, "Classical and Modern Fourier Analysis,", Pearson Education, (2004).   Google Scholar

[4]

R. P. Kanwal, "Generalized Functions. Theory and Applications,", $3^{rd}$ edition, (2004).  doi: 10.1007/978-0-8176-8174-6.  Google Scholar

[5]

A. Lechleiter, Explicit characterization of the support of non-linear inclusions,, Inverse Probl. Imaging, 5 (2011), 675.  doi: 10.3934/ipi.2011.5.675.  Google Scholar

[6]

K. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,, J. Opt. Soc. Am. B, 5 (1988), 571.   Google Scholar

[7]

K. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,, Phys. Rev. B, 39 (1989), 3590.   Google Scholar

[8]

P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697.  doi: 10.1081/PDE-100001768.  Google Scholar

[9]

L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697.  doi: 10.1137/S0036141096305796.  Google Scholar

[10]

L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Laplacian and recovery of singularities of a multi-dimensional scattering potential,, Inverse Problems, 17 (2001), 1321.  doi: 10.1088/0266-5611/17/5/306.  Google Scholar

[11]

L. Päivärinta and V. Serov, An n-dimensional Borg-Levinson theorem for singular potentials,, Adv. Appl. Math., 29 (2002), 509.  doi: 10.1016/S0196-8858(02)00027-1.  Google Scholar

[12]

R. T. Prosser, Formal solutions of inverse scattering problems. IV. Error estimates,, J. Math. Phys., 23 (1982), 2127.  doi: 10.1063/1.525267.  Google Scholar

[13]

J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625.  doi: 10.1088/0266-5611/23/2/010.  Google Scholar

[14]

A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721.  doi: 10.1081/PDE-100107457.  Google Scholar

[15]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67.  doi: 10.1081/PDE-200044450.  Google Scholar

[16]

H. Schürmann and R. Schmoldt, On the theory of reflectivity and transmissivity of a lossless nonlinear dielectric slab,, Z. Phys. B, 92 (1993), 179.   Google Scholar

[17]

H. Schürmann and R. Schmoldt, Optical response of a nonlinear absorbing dielectric film,, Opt. Lett., 21 (1996), 387.   Google Scholar

[18]

V. Serov, Reconstruction of singularities of the potential in the two-dimensional Schrödinger operator from fixed-angle scattering data. (Russian),, Dokl. Akad. Nauk, 385 (2002), 160.   Google Scholar

[19]

V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/6/065002.  Google Scholar

[20]

V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/32/325206.  Google Scholar

[21]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,, J. Math. Phys. 53 (2012) 123522., 53 (2012).  doi: 10.1063/1.4769825.  Google Scholar

[22]

P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55.  doi: 10.1080/03605309208820834.  Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[3]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[7]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[10]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[11]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[12]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[16]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[19]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[20]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]