-
Previous Article
Constrained SART algorithm for inverse problems in image reconstruction
- IPI Home
- This Issue
-
Next Article
Inverse problem for a coupled parabolic system with discontinuous conductivities: One-dimensional case
Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D
1. | Department of Mathematical Sciences, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland, Finland, Finland |
References:
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).
|
[2] |
G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451.
|
[3] |
L. Grafakos, "Classical and Modern Fourier Analysis,", Pearson Education, (2004).
|
[4] |
R. P. Kanwal, "Generalized Functions. Theory and Applications,", $3^{rd}$ edition, (2004).
doi: 10.1007/978-0-8176-8174-6. |
[5] |
A. Lechleiter, Explicit characterization of the support of non-linear inclusions,, Inverse Probl. Imaging, 5 (2011), 675.
doi: 10.3934/ipi.2011.5.675. |
[6] |
K. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,, J. Opt. Soc. Am. B, 5 (1988), 571. Google Scholar |
[7] |
K. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,, Phys. Rev. B, 39 (1989), 3590. Google Scholar |
[8] |
P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697.
doi: 10.1081/PDE-100001768. |
[9] |
L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697.
doi: 10.1137/S0036141096305796. |
[10] |
L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Laplacian and recovery of singularities of a multi-dimensional scattering potential,, Inverse Problems, 17 (2001), 1321.
doi: 10.1088/0266-5611/17/5/306. |
[11] |
L. Päivärinta and V. Serov, An n-dimensional Borg-Levinson theorem for singular potentials,, Adv. Appl. Math., 29 (2002), 509.
doi: 10.1016/S0196-8858(02)00027-1. |
[12] |
R. T. Prosser, Formal solutions of inverse scattering problems. IV. Error estimates,, J. Math. Phys., 23 (1982), 2127.
doi: 10.1063/1.525267. |
[13] |
J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625.
doi: 10.1088/0266-5611/23/2/010. |
[14] |
A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721.
doi: 10.1081/PDE-100107457. |
[15] |
A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67.
doi: 10.1081/PDE-200044450. |
[16] |
H. Schürmann and R. Schmoldt, On the theory of reflectivity and transmissivity of a lossless nonlinear dielectric slab,, Z. Phys. B, 92 (1993), 179. Google Scholar |
[17] |
H. Schürmann and R. Schmoldt, Optical response of a nonlinear absorbing dielectric film,, Opt. Lett., 21 (1996), 387. Google Scholar |
[18] |
V. Serov, Reconstruction of singularities of the potential in the two-dimensional Schrödinger operator from fixed-angle scattering data. (Russian),, Dokl. Akad. Nauk, 385 (2002), 160.
|
[19] |
V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions,, Inverse Problems, 24 (2008).
doi: 10.1088/0266-5611/24/6/065002. |
[20] |
V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions,, J. Phys. A: Math. Theor., 43 (2010).
doi: 10.1088/1751-8113/43/32/325206. |
[21] |
V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,, J. Math. Phys. 53 (2012) 123522., 53 (2012).
doi: 10.1063/1.4769825. |
[22] |
P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55.
doi: 10.1080/03605309208820834. |
show all references
References:
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).
|
[2] |
G. Eskin and J. Ralston, Inverse backscattering in two dimensions,, Comm. Math. Phys., 138 (1991), 451.
|
[3] |
L. Grafakos, "Classical and Modern Fourier Analysis,", Pearson Education, (2004).
|
[4] |
R. P. Kanwal, "Generalized Functions. Theory and Applications,", $3^{rd}$ edition, (2004).
doi: 10.1007/978-0-8176-8174-6. |
[5] |
A. Lechleiter, Explicit characterization of the support of non-linear inclusions,, Inverse Probl. Imaging, 5 (2011), 675.
doi: 10.3934/ipi.2011.5.675. |
[6] |
K. Leung, Scattering of transverse-electric electromagnetic waves with a finite nonlinear film,, J. Opt. Soc. Am. B, 5 (1988), 571. Google Scholar |
[7] |
K. Leung, Exact results for the scattering of electromagnetic waves with a nonlinear film,, Phys. Rev. B, 39 (1989), 3590. Google Scholar |
[8] |
P. Ola, L. Päivärinta and V. Serov, Recovering singularities from backscattering in two dimensions,, Comm. Partial Differential Equations, 26 (2001), 697.
doi: 10.1081/PDE-100001768. |
[9] |
L. Päivärinta and V. Serov, Recovery of singularities of a multidimensional scattering potential,, SIAM J. Math. Anal., 29 (1998), 697.
doi: 10.1137/S0036141096305796. |
[10] |
L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Laplacian and recovery of singularities of a multi-dimensional scattering potential,, Inverse Problems, 17 (2001), 1321.
doi: 10.1088/0266-5611/17/5/306. |
[11] |
L. Päivärinta and V. Serov, An n-dimensional Borg-Levinson theorem for singular potentials,, Adv. Appl. Math., 29 (2002), 509.
doi: 10.1016/S0196-8858(02)00027-1. |
[12] |
R. T. Prosser, Formal solutions of inverse scattering problems. IV. Error estimates,, J. Math. Phys., 23 (1982), 2127.
doi: 10.1063/1.525267. |
[13] |
J. M. Reyes, Inverse backscattering for the Schrödinger equation in 2D,, Inverse Problems, 23 (2007), 625.
doi: 10.1088/0266-5611/23/2/010. |
[14] |
A. Ruiz, Recovery of the singularities of a potential from fixed angle scattering data,, Comm. Partial Differential Equations, 26 (2001), 1721.
doi: 10.1081/PDE-100107457. |
[15] |
A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Differential Equations, 30 (2005), 67.
doi: 10.1081/PDE-200044450. |
[16] |
H. Schürmann and R. Schmoldt, On the theory of reflectivity and transmissivity of a lossless nonlinear dielectric slab,, Z. Phys. B, 92 (1993), 179. Google Scholar |
[17] |
H. Schürmann and R. Schmoldt, Optical response of a nonlinear absorbing dielectric film,, Opt. Lett., 21 (1996), 387. Google Scholar |
[18] |
V. Serov, Reconstruction of singularities of the potential in the two-dimensional Schrödinger operator from fixed-angle scattering data. (Russian),, Dokl. Akad. Nauk, 385 (2002), 160.
|
[19] |
V. Serov, Inverse fixed angle scattering and backscattering problems in two dimensions,, Inverse Problems, 24 (2008).
doi: 10.1088/0266-5611/24/6/065002. |
[20] |
V. Serov and J. Sandhu, Inverse backscattering problem for the generalized nonlinear Schrödinger operator in two dimensions,, J. Phys. A: Math. Theor., 43 (2010).
doi: 10.1088/1751-8113/43/32/325206. |
[21] |
V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,, J. Math. Phys. 53 (2012) 123522., 53 (2012).
doi: 10.1063/1.4769825. |
[22] |
P. Stefanov, Generic uniqueness for two inverse problems in potential scattering,, Comm. Partial Differential Equations, 17 (1992), 55.
doi: 10.1080/03605309208820834. |
[1] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[2] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[3] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[4] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[5] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[6] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[7] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[8] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[9] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[10] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[11] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[12] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[13] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[14] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[15] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[16] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[17] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[18] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[19] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[20] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]