Citation: |
[1] |
A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction techniques (SART): A superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), 81-94. |
[2] |
Y. Censor and S. A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications," Numer. Math. and Sci. Comp., Oxford Univ. Press, New York, 1997. |
[3] |
G. T. Herman, "Image Reconstruction from Projections. The Fundamentals of Computerized Tomography," Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. |
[4] |
M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART), in "Proc. 35th Asilomar Conf. Signals, Systems, and Computers," Pacific Grove, CA, (2001), 360-364. |
[5] |
M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction, IEEE Trans. Medical Imaging, (2003). |
[6] |
I. Koltracht and P. Lancaster, Constraining strategies for linear iterative processes, IMA Journal of Numerical Analysis, 10 (1990), 555-567.doi: 10.1093/imanum/10.4.555. |
[7] |
I. Koltracht, P. Lancaster and D. Smith, The structure of some matrices arising in tomography, Linear Algebra and its Applications, 130 (1990), 193-218.doi: 10.1016/0024-3795(90)90212-U. |
[8] |
A. Nicola, S. Petra, C. Popa and C. Schnörr, On a general extending and constraining procedure for linear iterative methods, Intern. Journal of Computer Mathematics, 89(2) (2012), 231-253. |
[9] |
X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 123009, 36 pp.doi: 10.1088/0266-5611/25/12/123009. |
[10] |
C. Popa, "Projection Algorithms, Classical Results and Developments. Applications to Image Reconstructions," Lambert Academic Publishing - AV Akademikerverlag GmbH & Co.KG,Saarbrücken, Germany, 2012. |
[11] |
C. Popa, A hybrid Kaczmarz-conjugate gradient algorithm for image reconstruction, Mathematics and Computers in Simulation, 80 (2010), 2272-2285.doi: 10.1016/j.matcom.2010.04.024. |
[12] |
C. Popa, Constrained Kaczmarz extended algorithm for image reconstruction, Linear Algebra and its Applications, 429 (2008), 2247-2267.doi: 10.1016/j.laa.2008.06.024. |