Citation: |
[1] |
A. Adler, R. Guardo and Y. Berthiaume, Impedance imaging of lung ventilation: Do we need to account for chest expansion?, IEEE Trans. Biomed. Eng., 43 (1996), 414-420. |
[2] |
L. Ahlfors, "Lectures on Quasiconformal Mappings," Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. |
[3] |
K. Astala, T. Iwaniec and G. Martin, "Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane," Princeton Mathematical Series, 48, Princeton University Press, Princeton, NJ, 2009. |
[4] |
K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224.doi: 10.1081/PDE-200044485. |
[5] |
K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265. |
[6] |
K. Astala, J. L. Mueller, L. Paivarinta and S. Siltanen, Numerical computation of complex geometrical optics solutions to the conductivity equation, Applied and Computational Harmonic Analysis, 29 (2010), 2-17.doi: 10.1016/j.acha.2009.08.001. |
[7] |
D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E: Sci. Instrum., 17 (1984), 723-733. |
[8] |
A. Boyle, W. R. B. Lionheart, C. Gómez-Laberge and A. Adler, Evaluating deformation corrections in electrical impedance tomography, in "Proc. of the 2008 Electrical Impedance Tomography Conference," Dartmouth College, Hanover, New Hampshire, USA, June 16-18, (2008). Available from: http://engineering.dartmouth.edu/eit2008/EIT_Conference_2008.pdf. |
[9] |
A. Boyle and A. Adler, The impact of electrode area, contact impedance and boundary shape on EIT images, Physiological Measurement, 32 (2011), 745-754 |
[10] |
V. Bozin, N. Lakic, V. Markovic and M. Mateljevic, Unique extremality, J. Anal. Math. 75 (1998), 299-338.doi: 10.1007/BF02788704. |
[11] |
R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997), 1009-1027.doi: 10.1080/03605309708821292. |
[12] |
A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil Mat., Rio de Janeiro, (1980), 65-73. |
[13] |
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.doi: 10.1137/S0036144598333613. |
[14] |
K.-S.Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924. |
[15] |
E. L. V. Costa, C. N. Chaves, S. Gomes, M. A. Beraldo, M. S. Volpe, M. R. Tucci, I. A. L. Schettino, S. H. Bohm, C. R. R. Carvalho, H. Tanaka, R. G. Lima and M. B. A. Amato, Real-time detection of pneumothorax using electrical impedance tomography, Crit. Care. Med., 36 (2008), 1230-1238. |
[16] |
T. Dai, C. Gomez-Laberge and A. Adler, Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences, Physiol. Meas., 29 (2008), S77-S88. |
[17] |
E. Gersing, B. Hoffman and M. Osypka, Influence of changing peripheral geometry on electrical impedance tomography measurements, Medical & Biological Engineering & Computing, 34 (1996), 359-361. |
[18] |
A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys., 275 (2007), 749-789.doi: 10.1007/s00220-007-0311-6. |
[19] |
A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 55-97.doi: 10.1090/S0273-0979-08-01232-9. |
[20] |
A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Cloaking devices, electromagnetic wormholes and transformation optics, SIAM Review, 51 (2009), 3-33.doi: 10.1137/080716827. |
[21] |
A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-693. |
[22] |
A. Greenleaf, M. Lassas and G. Uhlmann, Anisotropic conductivities that cannot detected in EIT, Physiological Measurement, 24 (2003), 413-420. |
[23] |
G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT, Physiol. Meas., 27 (2006), S187-S198. |
[24] |
D. Isaacson, J. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography, IEEE Trans. Med. Im., 23 (2004), 821-828. |
[25] |
D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Imaging cardiac activity by the D-bar method for electrical impedance tomography, Physiological Measurement, 27 (2006), S43-S50. |
[26] |
H. Jain, D. Isaacson, P. M. Edic and J. C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary, IEEE Trans. Biomed. Eng., 44 (1997), 1051-1060. |
[27] |
J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography, Inverse Problems, 16 (2000), 1487-1522.doi: 10.1088/0266-5611/16/5/321. |
[28] |
R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, in "Inverse Problems" (New York, 1983), SIAM-AMS Proc., 14, AMS, Providence, RI, (1984), 113-123. |
[29] |
R. Kohn, H. Shen, M. Vogelius and M. Weinstein, Cloaking via change of variables in electrical impedance tomography, Inverse Problems, 24 (2008), 015016, 21 pp.doi: 10.1088/0266-5611/24/1/015016. |
[30] |
K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Problems and Imaging, 3 (2009), 599-624.doi: 10.3934/ipi.2009.3.599. |
[31] |
V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen and J. P. Kaipio, Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns, Physiological Measurement, 18 (1997), 289-303. |
[32] |
V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary, SIAM J. Appl. Math., 66 (2005), 365-383.doi: 10.1137/040612737. |
[33] |
V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary in three dimensions, SIAM J. Appl. Math., 67 (2007), 1440-1452.doi: 10.1137/060666986. |
[34] |
V. Kolehmainen, M. Lassas and P. Ola, Calderón's inverse problem with an imperfectly known boundary and reconstruction up to a conformal deformation, SIAM J. Math. Anal., 42 (2010), 1371-1381.doi: 10.1137/080716918. |
[35] |
V. Kolehmainen, M. Lassas and P. Ola, Electrical impedance tomography problem with inaccurately known boundary and contact impedances, IEEE Trans. Med. Im., 27 (2008), 1404-1414. |
[36] |
M. Lassas and G. Uhlmann, On determining Riemannian manifold from the Dirichlet-to-Neumann map, Annales Scientifiques de l'Ecole Normale Superieure (4), 34 (2001), 771-787.doi: 10.1016/S0012-9593(01)01076-X. |
[37] |
W. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.doi: 10.1088/0266-5611/13/1/010. |
[38] |
W. Lionheart, Boundary shape and electrical impedance tomography, Inverse Problems, 14 (1998), 139-147.doi: 10.1088/0266-5611/14/1/012. |
[39] |
A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math. (2), 143 (1996), 71-96.doi: 10.2307/2118653. |
[40] |
A. Nissinen, V. Kolehmainen and J. P. Kaipio, Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography, IEEE Trans. Med. Imag., 30 (2011), 231-242. |
[41] |
A. Nissinen, V. Kolehmainen and J. P. Kaipio, Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach, International Journal for Uncertainty Quantification, 1 (2011), 203-222.doi: 10.1615/Int.J.UncertaintyQuantification.v1.i3.20. |
[42] |
J. Nocedal and S. J. Wright, "Numerical Optimization," Second edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006. |
[43] |
Ch. Pommerenke, "Boundary Behaviour of Conformal Maps," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299, Springer-Verlag, Berlin, 1992. |
[44] |
S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem, Inverse Problems, 16 (2000), 681-699. Erratum: Inverse Problems, 17, 1561-1563.doi: 10.1088/0266-5611/16/3/310. |
[45] |
M. Soleimaini, C. Gómez-Laberge and A. Adler, Imaging of conductivity changes and electrode movement in EIT, Physiol. Meas., 27 (2006), S103-S113. |
[46] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.doi: 10.1137/0152060. |
[47] |
K. Strebel, On the existence of extremal Teichmüller mappings, J. Anal. Math., 30 (1976), 464-480. |
[48] |
J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201-232.doi: 10.1002/cpa.3160430203. |