February  2013, 7(1): 217-242. doi: 10.3934/ipi.2013.7.217

Recovering boundary shape and conductivity in electrical impedance tomography

1. 

University of Eastern Finland, Department of Applied Physics, P.O.Box 1627, 70211 Kuopio, Finland

2. 

University of Helsinki, Department of Mathematics and Statistics, P.O.Box 68, 00014 University of Helsinki, Finland, Finland

3. 

Department of Mathematics and Statistics, P.O. Box 68, 00014 University of Helsinki, Finland

Received  November 2011 Revised  May 2012 Published  February 2013

Electrical impedance tomography (EIT) aims to reconstruct the electric conductivity inside a physical body from current-to-voltage measurements at the boundary of the body. In practical EIT one often lacks exact knowledge of the domain boundary, and inaccurate modeling of the boundary causes artifacts in the reconstructions. A novel method is presented for recovering the boundary shape and an isotropic conductivity from EIT data. The first step is to determine the minimally anisotropic conductivity in a model domain reproducing the measured EIT data. Second, a Beltrami equation is solved, providing shape-deforming reconstruction. The algorithm is applied to simulated noisy data from a realistic electrode model, demonstrating that approximate recovery of the boundary shape and conductivity is feasible.
Citation: Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217
References:
[1]

A. Adler, R. Guardo and Y. Berthiaume, Impedance imaging of lung ventilation: Do we need to account for chest expansion?,, IEEE Trans. Biomed. Eng., 43 (1996), 414.   Google Scholar

[2]

L. Ahlfors, "Lectures on Quasiconformal Mappings,", Van Nostrand Mathematical Studies, (1966).   Google Scholar

[3]

K. Astala, T. Iwaniec and G. Martin, "Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,", Princeton Mathematical Series, 48 (2009).   Google Scholar

[4]

K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. Partial Differential Equations, 30 (2005), 207.  doi: 10.1081/PDE-200044485.  Google Scholar

[5]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math. (2), 163 (2006), 265.  doi: 10.4007/annals.2006.163.265.  Google Scholar

[6]

K. Astala, J. L. Mueller, L. Paivarinta and S. Siltanen, Numerical computation of complex geometrical optics solutions to the conductivity equation,, Applied and Computational Harmonic Analysis, 29 (2010), 2.  doi: 10.1016/j.acha.2009.08.001.  Google Scholar

[7]

D. C. Barber and B. H. Brown, Applied potential tomography,, J. Phys. E: Sci. Instrum., 17 (1984), 723.   Google Scholar

[8]

A. Boyle, W. R. B. Lionheart, C. Gómez-Laberge and A. Adler, Evaluating deformation corrections in electrical impedance tomography,, in, (2008), 16.   Google Scholar

[9]

A. Boyle and A. Adler, The impact of electrode area, contact impedance and boundary shape on EIT images,, Physiological Measurement, 32 (2011), 745.   Google Scholar

[10]

V. Bozin, N. Lakic, V. Markovic and M. Mateljevic, Unique extremality,, J. Anal. Math. 75 (1998), 75 (1998), 299.  doi: 10.1007/BF02788704.  Google Scholar

[11]

R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions,, Comm. Partial Differential Equations, 22 (1997), 1009.  doi: 10.1080/03605309708821292.  Google Scholar

[12]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, (1980), 65.   Google Scholar

[13]

M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography,, SIAM Review, 41 (1999), 85.  doi: 10.1137/S0036144598333613.  Google Scholar

[14]

K.-S.Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography,, IEEE Trans. Biomed. Eng., 36 (1989), 918.   Google Scholar

[15]

E. L. V. Costa, C. N. Chaves, S. Gomes, M. A. Beraldo, M. S. Volpe, M. R. Tucci, I. A. L. Schettino, S. H. Bohm, C. R. R. Carvalho, H. Tanaka, R. G. Lima and M. B. A. Amato, Real-time detection of pneumothorax using electrical impedance tomography,, Crit. Care. Med., 36 (2008), 1230.   Google Scholar

[16]

T. Dai, C. Gomez-Laberge and A. Adler, Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences,, Physiol. Meas., 29 (2008).   Google Scholar

[17]

E. Gersing, B. Hoffman and M. Osypka, Influence of changing peripheral geometry on electrical impedance tomography measurements,, Medical & Biological Engineering & Computing, 34 (1996), 359.   Google Scholar

[18]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Full-wave invisibility of active devices at all frequencies,, Comm. Math. Phys., 275 (2007), 749.  doi: 10.1007/s00220-007-0311-6.  Google Scholar

[19]

A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems,, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 55.  doi: 10.1090/S0273-0979-08-01232-9.  Google Scholar

[20]

A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Cloaking devices, electromagnetic wormholes and transformation optics,, SIAM Review, 51 (2009), 3.  doi: 10.1137/080716827.  Google Scholar

[21]

A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem,, Math. Res. Lett., 10 (2003), 685.   Google Scholar

[22]

A. Greenleaf, M. Lassas and G. Uhlmann, Anisotropic conductivities that cannot detected in EIT,, Physiological Measurement, 24 (2003), 413.   Google Scholar

[23]

G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT,, Physiol. Meas., 27 (2006).   Google Scholar

[24]

D. Isaacson, J. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography,, IEEE Trans. Med. Im., 23 (2004), 821.   Google Scholar

[25]

D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Imaging cardiac activity by the D-bar method for electrical impedance tomography,, Physiological Measurement, 27 (2006).   Google Scholar

[26]

H. Jain, D. Isaacson, P. M. Edic and J. C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary,, IEEE Trans. Biomed. Eng., 44 (1997), 1051.   Google Scholar

[27]

J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography,, Inverse Problems, 16 (2000), 1487.  doi: 10.1088/0266-5611/16/5/321.  Google Scholar

[28]

R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary,, in, 14 (1984), 113.   Google Scholar

[29]

R. Kohn, H. Shen, M. Vogelius and M. Weinstein, Cloaking via change of variables in electrical impedance tomography,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015016.  Google Scholar

[30]

K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3 (2009), 599.  doi: 10.3934/ipi.2009.3.599.  Google Scholar

[31]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen and J. P. Kaipio, Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,, Physiological Measurement, 18 (1997), 289.   Google Scholar

[32]

V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary,, SIAM J. Appl. Math., 66 (2005), 365.  doi: 10.1137/040612737.  Google Scholar

[33]

V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary in three dimensions,, SIAM J. Appl. Math., 67 (2007), 1440.  doi: 10.1137/060666986.  Google Scholar

[34]

V. Kolehmainen, M. Lassas and P. Ola, Calderón's inverse problem with an imperfectly known boundary and reconstruction up to a conformal deformation,, SIAM J. Math. Anal., 42 (2010), 1371.  doi: 10.1137/080716918.  Google Scholar

[35]

V. Kolehmainen, M. Lassas and P. Ola, Electrical impedance tomography problem with inaccurately known boundary and contact impedances,, IEEE Trans. Med. Im., 27 (2008), 1404.   Google Scholar

[36]

M. Lassas and G. Uhlmann, On determining Riemannian manifold from the Dirichlet-to-Neumann map,, Annales Scientifiques de l'Ecole Normale Superieure (4), 34 (2001), 771.  doi: 10.1016/S0012-9593(01)01076-X.  Google Scholar

[37]

W. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging,, Inverse Problems, 13 (1997), 125.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[38]

W. Lionheart, Boundary shape and electrical impedance tomography,, Inverse Problems, 14 (1998), 139.  doi: 10.1088/0266-5611/14/1/012.  Google Scholar

[39]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. Math. (2), 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[40]

A. Nissinen, V. Kolehmainen and J. P. Kaipio, Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography,, IEEE Trans. Med. Imag., 30 (2011), 231.   Google Scholar

[41]

A. Nissinen, V. Kolehmainen and J. P. Kaipio, Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach,, International Journal for Uncertainty Quantification, 1 (2011), 203.  doi: 10.1615/Int.J.UncertaintyQuantification.v1.i3.20.  Google Scholar

[42]

J. Nocedal and S. J. Wright, "Numerical Optimization,", Second edition, (2006).   Google Scholar

[43]

Ch. Pommerenke, "Boundary Behaviour of Conformal Maps,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299 (1992).   Google Scholar

[44]

S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem,, Inverse Problems, 16 (2000), 681.  doi: 10.1088/0266-5611/16/3/310.  Google Scholar

[45]

M. Soleimaini, C. Gómez-Laberge and A. Adler, Imaging of conductivity changes and electrode movement in EIT,, Physiol. Meas., 27 (2006).   Google Scholar

[46]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[47]

K. Strebel, On the existence of extremal Teichmüller mappings,, J. Anal. Math., 30 (1976), 464.   Google Scholar

[48]

J. Sylvester, An anisotropic inverse boundary value problem,, Comm. Pure Appl. Math., 43 (1990), 201.  doi: 10.1002/cpa.3160430203.  Google Scholar

show all references

References:
[1]

A. Adler, R. Guardo and Y. Berthiaume, Impedance imaging of lung ventilation: Do we need to account for chest expansion?,, IEEE Trans. Biomed. Eng., 43 (1996), 414.   Google Scholar

[2]

L. Ahlfors, "Lectures on Quasiconformal Mappings,", Van Nostrand Mathematical Studies, (1966).   Google Scholar

[3]

K. Astala, T. Iwaniec and G. Martin, "Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,", Princeton Mathematical Series, 48 (2009).   Google Scholar

[4]

K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. Partial Differential Equations, 30 (2005), 207.  doi: 10.1081/PDE-200044485.  Google Scholar

[5]

K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane,, Ann. of Math. (2), 163 (2006), 265.  doi: 10.4007/annals.2006.163.265.  Google Scholar

[6]

K. Astala, J. L. Mueller, L. Paivarinta and S. Siltanen, Numerical computation of complex geometrical optics solutions to the conductivity equation,, Applied and Computational Harmonic Analysis, 29 (2010), 2.  doi: 10.1016/j.acha.2009.08.001.  Google Scholar

[7]

D. C. Barber and B. H. Brown, Applied potential tomography,, J. Phys. E: Sci. Instrum., 17 (1984), 723.   Google Scholar

[8]

A. Boyle, W. R. B. Lionheart, C. Gómez-Laberge and A. Adler, Evaluating deformation corrections in electrical impedance tomography,, in, (2008), 16.   Google Scholar

[9]

A. Boyle and A. Adler, The impact of electrode area, contact impedance and boundary shape on EIT images,, Physiological Measurement, 32 (2011), 745.   Google Scholar

[10]

V. Bozin, N. Lakic, V. Markovic and M. Mateljevic, Unique extremality,, J. Anal. Math. 75 (1998), 75 (1998), 299.  doi: 10.1007/BF02788704.  Google Scholar

[11]

R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for non-smooth conductivities in two dimensions,, Comm. Partial Differential Equations, 22 (1997), 1009.  doi: 10.1080/03605309708821292.  Google Scholar

[12]

A. Calderón, On an inverse boundary value problem,, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, (1980), 65.   Google Scholar

[13]

M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography,, SIAM Review, 41 (1999), 85.  doi: 10.1137/S0036144598333613.  Google Scholar

[14]

K.-S.Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography,, IEEE Trans. Biomed. Eng., 36 (1989), 918.   Google Scholar

[15]

E. L. V. Costa, C. N. Chaves, S. Gomes, M. A. Beraldo, M. S. Volpe, M. R. Tucci, I. A. L. Schettino, S. H. Bohm, C. R. R. Carvalho, H. Tanaka, R. G. Lima and M. B. A. Amato, Real-time detection of pneumothorax using electrical impedance tomography,, Crit. Care. Med., 36 (2008), 1230.   Google Scholar

[16]

T. Dai, C. Gomez-Laberge and A. Adler, Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences,, Physiol. Meas., 29 (2008).   Google Scholar

[17]

E. Gersing, B. Hoffman and M. Osypka, Influence of changing peripheral geometry on electrical impedance tomography measurements,, Medical & Biological Engineering & Computing, 34 (1996), 359.   Google Scholar

[18]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Full-wave invisibility of active devices at all frequencies,, Comm. Math. Phys., 275 (2007), 749.  doi: 10.1007/s00220-007-0311-6.  Google Scholar

[19]

A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems,, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 55.  doi: 10.1090/S0273-0979-08-01232-9.  Google Scholar

[20]

A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Cloaking devices, electromagnetic wormholes and transformation optics,, SIAM Review, 51 (2009), 3.  doi: 10.1137/080716827.  Google Scholar

[21]

A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem,, Math. Res. Lett., 10 (2003), 685.   Google Scholar

[22]

A. Greenleaf, M. Lassas and G. Uhlmann, Anisotropic conductivities that cannot detected in EIT,, Physiological Measurement, 24 (2003), 413.   Google Scholar

[23]

G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT,, Physiol. Meas., 27 (2006).   Google Scholar

[24]

D. Isaacson, J. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography,, IEEE Trans. Med. Im., 23 (2004), 821.   Google Scholar

[25]

D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Imaging cardiac activity by the D-bar method for electrical impedance tomography,, Physiological Measurement, 27 (2006).   Google Scholar

[26]

H. Jain, D. Isaacson, P. M. Edic and J. C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary,, IEEE Trans. Biomed. Eng., 44 (1997), 1051.   Google Scholar

[27]

J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography,, Inverse Problems, 16 (2000), 1487.  doi: 10.1088/0266-5611/16/5/321.  Google Scholar

[28]

R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary,, in, 14 (1984), 113.   Google Scholar

[29]

R. Kohn, H. Shen, M. Vogelius and M. Weinstein, Cloaking via change of variables in electrical impedance tomography,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015016.  Google Scholar

[30]

K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem,, Inverse Problems and Imaging, 3 (2009), 599.  doi: 10.3934/ipi.2009.3.599.  Google Scholar

[31]

V. Kolehmainen, M. Vauhkonen, P. A. Karjalainen and J. P. Kaipio, Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns,, Physiological Measurement, 18 (1997), 289.   Google Scholar

[32]

V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary,, SIAM J. Appl. Math., 66 (2005), 365.  doi: 10.1137/040612737.  Google Scholar

[33]

V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary in three dimensions,, SIAM J. Appl. Math., 67 (2007), 1440.  doi: 10.1137/060666986.  Google Scholar

[34]

V. Kolehmainen, M. Lassas and P. Ola, Calderón's inverse problem with an imperfectly known boundary and reconstruction up to a conformal deformation,, SIAM J. Math. Anal., 42 (2010), 1371.  doi: 10.1137/080716918.  Google Scholar

[35]

V. Kolehmainen, M. Lassas and P. Ola, Electrical impedance tomography problem with inaccurately known boundary and contact impedances,, IEEE Trans. Med. Im., 27 (2008), 1404.   Google Scholar

[36]

M. Lassas and G. Uhlmann, On determining Riemannian manifold from the Dirichlet-to-Neumann map,, Annales Scientifiques de l'Ecole Normale Superieure (4), 34 (2001), 771.  doi: 10.1016/S0012-9593(01)01076-X.  Google Scholar

[37]

W. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging,, Inverse Problems, 13 (1997), 125.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[38]

W. Lionheart, Boundary shape and electrical impedance tomography,, Inverse Problems, 14 (1998), 139.  doi: 10.1088/0266-5611/14/1/012.  Google Scholar

[39]

A. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem,, Ann. Math. (2), 143 (1996), 71.  doi: 10.2307/2118653.  Google Scholar

[40]

A. Nissinen, V. Kolehmainen and J. P. Kaipio, Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography,, IEEE Trans. Med. Imag., 30 (2011), 231.   Google Scholar

[41]

A. Nissinen, V. Kolehmainen and J. P. Kaipio, Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach,, International Journal for Uncertainty Quantification, 1 (2011), 203.  doi: 10.1615/Int.J.UncertaintyQuantification.v1.i3.20.  Google Scholar

[42]

J. Nocedal and S. J. Wright, "Numerical Optimization,", Second edition, (2006).   Google Scholar

[43]

Ch. Pommerenke, "Boundary Behaviour of Conformal Maps,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 299 (1992).   Google Scholar

[44]

S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem,, Inverse Problems, 16 (2000), 681.  doi: 10.1088/0266-5611/16/3/310.  Google Scholar

[45]

M. Soleimaini, C. Gómez-Laberge and A. Adler, Imaging of conductivity changes and electrode movement in EIT,, Physiol. Meas., 27 (2006).   Google Scholar

[46]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[47]

K. Strebel, On the existence of extremal Teichmüller mappings,, J. Anal. Math., 30 (1976), 464.   Google Scholar

[48]

J. Sylvester, An anisotropic inverse boundary value problem,, Comm. Pure Appl. Math., 43 (1990), 201.  doi: 10.1002/cpa.3160430203.  Google Scholar

[1]

Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020290

[2]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[5]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[6]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[7]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[8]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

[9]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[14]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[15]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[16]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[19]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[20]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (9)

[Back to Top]