
Previous Article
Quantitative photoacoustic tomography with variable index of refraction
 IPI Home
 This Issue

Next Article
Recovering boundary shape and conductivity in electrical impedance tomography
Spherical mean transform: A PDE approach
1.  Department of Mathematics, University of Idaho, Moscow, Idaho 83844, United States 
We also discuss how the approach works for the hyperbolic and spherical spaces.
References:
[1] 
M. Agranovsky and P. Kuchment, The support theorem for the single radius spherical mean transform, Memoirs on Differential Equations and Mathematical Physics, 52 (2011), 116. Google Scholar 
[2] 
M. Agranovsky and E. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139 (1996), 383414. doi: 10.1006/jfan.1996.0090. Google Scholar 
[3] 
G. Beylkin, The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering, J. Math. Phys., 24(1983), 13991400. doi: 10.1063/1.525873. Google Scholar 
[4] 
G. Beylkin, Iterated spherical means in linearized inverse problems, in "Conference on Inverse Scattering: Theory and Application" (Tulsa, Okla., 1983), SIAM, Philadelphia, PA, (1983), 112117. Google Scholar 
[5] 
R. Courant and D. Hilbert, "Methods of Mathematical Physics. Vol. II: Partial Differential Equations," (Vol. II by R. Courant), Interscience Publishers, New YorkLondon, 1962. Google Scholar 
[6] 
M. Courdurier, F. Noo, M. Defrise and H. Kudo, Solving the interior problem of computed tomography using a priori knowledge, Inverse problems, 24 (2008), 065001, 27 pp. doi: 10.1088/02665611/24/6/065001. Google Scholar 
[7] 
A. Cormack and E. Quinto, A Radon transform on spheres through the origin in $R^n$ and applications to the Darboux equation, Trans. Amer. Math. Soc., 260 (1980), 575581. doi: 10.2307/1998023. Google Scholar 
[8] 
C. Epstein and B. Kleiner, Spherical means in annular regions, Comm. Pure Appl. Math., 46 (1993), 441451. doi: 10.1002/cpa.3160460307. Google Scholar 
[9] 
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 12131240 (electronic). doi: 10.1137/S0036141002417814. Google Scholar 
[10] 
S. Helgason, "Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions," Pure and Applied Mathematics, 113, Academic Press, Inc., Orlando, FL, 1984. Google Scholar 
[11] 
F. John, "Plane Waves and Spherical Means Applied to Partial Differential Equations," Reprint of the 1955 original, SpringerVerlag, New YorkBerlin, 1981. Google Scholar 
[12] 
H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography, Physics in Medicine and Biology, 53 (2008), 2207. Google Scholar 
[13] 
V. Lin and A. Pinkus, Fundamentality of ridge functions, J. Approx. Theory, 75 (1993), 295311. doi: 10.1006/jath.1993.1104. Google Scholar 
[14] 
V. Lin and A. Pinkus, Approximation of multivariate functions, in "Advances in Computational Mathematics" (New Delhi, 1993), Ser. Approx. Decompos., 4, World Sci. Publ., River Edge, NJ, (1994), 257265. Google Scholar 
[15] 
L. {Nguyen}, Range description for a spherical mean transform on spaces of constant curvatures, arXiv:1107.1746, (2011). Google Scholar 
show all references
References:
[1] 
M. Agranovsky and P. Kuchment, The support theorem for the single radius spherical mean transform, Memoirs on Differential Equations and Mathematical Physics, 52 (2011), 116. Google Scholar 
[2] 
M. Agranovsky and E. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139 (1996), 383414. doi: 10.1006/jfan.1996.0090. Google Scholar 
[3] 
G. Beylkin, The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering, J. Math. Phys., 24(1983), 13991400. doi: 10.1063/1.525873. Google Scholar 
[4] 
G. Beylkin, Iterated spherical means in linearized inverse problems, in "Conference on Inverse Scattering: Theory and Application" (Tulsa, Okla., 1983), SIAM, Philadelphia, PA, (1983), 112117. Google Scholar 
[5] 
R. Courant and D. Hilbert, "Methods of Mathematical Physics. Vol. II: Partial Differential Equations," (Vol. II by R. Courant), Interscience Publishers, New YorkLondon, 1962. Google Scholar 
[6] 
M. Courdurier, F. Noo, M. Defrise and H. Kudo, Solving the interior problem of computed tomography using a priori knowledge, Inverse problems, 24 (2008), 065001, 27 pp. doi: 10.1088/02665611/24/6/065001. Google Scholar 
[7] 
A. Cormack and E. Quinto, A Radon transform on spheres through the origin in $R^n$ and applications to the Darboux equation, Trans. Amer. Math. Soc., 260 (1980), 575581. doi: 10.2307/1998023. Google Scholar 
[8] 
C. Epstein and B. Kleiner, Spherical means in annular regions, Comm. Pure Appl. Math., 46 (1993), 441451. doi: 10.1002/cpa.3160460307. Google Scholar 
[9] 
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 12131240 (electronic). doi: 10.1137/S0036141002417814. Google Scholar 
[10] 
S. Helgason, "Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions," Pure and Applied Mathematics, 113, Academic Press, Inc., Orlando, FL, 1984. Google Scholar 
[11] 
F. John, "Plane Waves and Spherical Means Applied to Partial Differential Equations," Reprint of the 1955 original, SpringerVerlag, New YorkBerlin, 1981. Google Scholar 
[12] 
H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography, Physics in Medicine and Biology, 53 (2008), 2207. Google Scholar 
[13] 
V. Lin and A. Pinkus, Fundamentality of ridge functions, J. Approx. Theory, 75 (1993), 295311. doi: 10.1006/jath.1993.1104. Google Scholar 
[14] 
V. Lin and A. Pinkus, Approximation of multivariate functions, in "Advances in Computational Mathematics" (New Delhi, 1993), Ser. Approx. Decompos., 4, World Sci. Publ., River Edge, NJ, (1994), 257265. Google Scholar 
[15] 
L. {Nguyen}, Range description for a spherical mean transform on spaces of constant curvatures, arXiv:1107.1746, (2011). Google Scholar 
[1] 
Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451456. doi: 10.3934/proc.2009.2009.451 
[2] 
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373382. doi: 10.3934/ipi.2009.3.373 
[3] 
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449461. doi: 10.3934/eect.2016013 
[4] 
Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$functionals of fractional orders. Communications on Pure & Applied Analysis, 2015, 14 (3) : 743757. doi: 10.3934/cpaa.2015.14.743 
[5] 
Torsten Görner, Ralf Hielscher, Stefan Kunis. Efficient and accurate computation of spherical mean values at scattered center points. Inverse Problems & Imaging, 2012, 6 (4) : 645661. doi: 10.3934/ipi.2012.6.645 
[6] 
Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 10631079. doi: 10.3934/krm.2011.4.1063 
[7] 
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595628. doi: 10.3934/mcrf.2016017 
[8] 
Sebastián Ferrer, Martin Lara. Families of canonical transformations by HamiltonJacobiPoincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223241. doi: 10.3934/jgm.2010.2.223 
[9] 
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and HamiltonJacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159198. doi: 10.3934/jgm.2010.2.159 
[10] 
Thierry Horsin, Peter I. Kogut. Optimal $L^2$control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 7396. doi: 10.3934/mcrf.2015.5.73 
[11] 
Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems & Imaging, 2020, 14 (5) : 797818. doi: 10.3934/ipi.2020037 
[12] 
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 13751385. doi: 10.3934/jimo.2018099 
[13] 
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 18. doi: 10.3934/jcd.2021001 
[14] 
Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 131155. doi: 10.3934/dcds.2019006 
[15] 
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131149. doi: 10.3934/amc.2007.1.131 
[16] 
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 922. doi: 10.3934/nhm.2013.8.9 
[17] 
Sergey A. Suslov. Twoequation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 165176. doi: 10.3934/dcdss.2008.1.165 
[18] 
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159169. doi: 10.3934/proc.2013.2013.159 
[19] 
Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297303. doi: 10.3934/proc.2015.0297 
[20] 
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 17891818. doi: 10.3934/dcds.2017075 
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]