February  2013, 7(1): 283-290. doi: 10.3934/ipi.2013.7.283

Source extraction in audio via background learning

1. 

Department of Mathematics, Michigan State University, East Lanisng, MI 48824, United States

2. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Received  July 2010 Revised  October 2010 Published  February 2013

Source extraction in audio is an important problem in the study of blind source separation (BSS) with many practical applications. It is a challenging problem when the foreground sources to be extracted are weak compared to the background sources. Traditional techniques often do not work in this setting. In this paper we propose a novel technique for extracting foreground sources. This is achieved by an interval of silence for the foreground sources. Using this silence interval one can learn the background information, allowing the removal or suppression of background sources. Very effective optimization schemes are proposed for the case of two sources and two mixtures.
Citation: Yang Wang, Zhengfang Zhou. Source extraction in audio via background learning. Inverse Problems & Imaging, 2013, 7 (1) : 283-290. doi: 10.3934/ipi.2013.7.283
References:
[1]

A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution,, Neural Computation, 7 (1995), 1129.

[2]

J. F. Cardoso and A. Souloumiac, Blind beamforming for non Gaussian signals,, IEE proceedings-f, (1993).

[3]

S. Choi, A. Cichocki, H. M. Park and S. Y. Lee, Blind source separation and independent component analysis: A review,, Neural Information Processing-Letters and Reviews, 6 (2005), 1.

[4]

A. Cichocki and S. Amari, "Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications,", Wiley, (2002).

[5]

A. Hyvärinen and E. Oja, Independent component analysis: Algorithms and applications,, Neural Networks, 13 (2000), 411.

[6]

A. Jourjine, S. Rickard and O. Yilmaz, Blind separation of disjoint orthogonal signals: Demixing n sources from 2 mixtures,, in, (2000), 2985.

[7]

J. Liu, J. Xin and Y. Qi, A dynamic algorithm for blind separation of convolutive sound mixtures,, Neurocomputing, 72 (2008), 521.

[8]

Y. Wang and Q. Wu, Sparse PCA by iterative elimination algorithm,, Adv. Comput. Math., 36 (2012), 137. doi: 10.1007/s10444-011-9186-3.

[9]

Y. Wang, O. Yilmaz and Z. Zhou, Phase aliasing correction for robust blind source separation using DUET,, to apeear in Applied and Computational Harmonic Analysis., ().

[10]

M. Yu, W.-Y. Ma, J. Xin and S. Osher, Convexity and fast speech extraction by split Bregman method,, preprint., ().

show all references

References:
[1]

A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution,, Neural Computation, 7 (1995), 1129.

[2]

J. F. Cardoso and A. Souloumiac, Blind beamforming for non Gaussian signals,, IEE proceedings-f, (1993).

[3]

S. Choi, A. Cichocki, H. M. Park and S. Y. Lee, Blind source separation and independent component analysis: A review,, Neural Information Processing-Letters and Reviews, 6 (2005), 1.

[4]

A. Cichocki and S. Amari, "Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications,", Wiley, (2002).

[5]

A. Hyvärinen and E. Oja, Independent component analysis: Algorithms and applications,, Neural Networks, 13 (2000), 411.

[6]

A. Jourjine, S. Rickard and O. Yilmaz, Blind separation of disjoint orthogonal signals: Demixing n sources from 2 mixtures,, in, (2000), 2985.

[7]

J. Liu, J. Xin and Y. Qi, A dynamic algorithm for blind separation of convolutive sound mixtures,, Neurocomputing, 72 (2008), 521.

[8]

Y. Wang and Q. Wu, Sparse PCA by iterative elimination algorithm,, Adv. Comput. Math., 36 (2012), 137. doi: 10.1007/s10444-011-9186-3.

[9]

Y. Wang, O. Yilmaz and Z. Zhou, Phase aliasing correction for robust blind source separation using DUET,, to apeear in Applied and Computational Harmonic Analysis., ().

[10]

M. Yu, W.-Y. Ma, J. Xin and S. Osher, Convexity and fast speech extraction by split Bregman method,, preprint., ().

[1]

Yuanchang Sun, Lisa M. Wingen, Barbara J. Finlayson-Pitts, Jack Xin. A semi-blind source separation method for differential optical absorption spectroscopy of atmospheric gas mixtures. Inverse Problems & Imaging, 2014, 8 (2) : 587-610. doi: 10.3934/ipi.2014.8.587

[2]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[3]

Ernan Haruvy, Ashutosh Prasad, Suresh Sethi, Rong Zhang. Competition with open source as a public good. Journal of Industrial & Management Optimization, 2008, 4 (1) : 199-211. doi: 10.3934/jimo.2008.4.199

[4]

Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092

[5]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[6]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[7]

Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040

[8]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[9]

Lauri Harhanen, Nuutti Hyvönen. Convex source support in half-plane. Inverse Problems & Imaging, 2010, 4 (3) : 429-448. doi: 10.3934/ipi.2010.4.429

[10]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[11]

Giuseppina Autuori, Patrizia Pucci. Kirchhoff systems with nonlinear source and boundary damping terms. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1161-1188. doi: 10.3934/cpaa.2010.9.1161

[12]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[13]

Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen. A mathematical framework for delay analysis in single source networks. Networks & Heterogeneous Media, 2017, 12 (1) : 113-145. doi: 10.3934/nhm.2017005

[14]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[15]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[16]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[17]

Xiaoliang Cheng, Rongfang Gong, Weimin Han. A new Kohn-Vogelius type formulation for inverse source problems. Inverse Problems & Imaging, 2015, 9 (4) : 1051-1067. doi: 10.3934/ipi.2015.9.1051

[18]

Alain Haraux. On the fast solution of evolution equations with a rapidly decaying source term. Mathematical Control & Related Fields, 2011, 1 (1) : 1-20. doi: 10.3934/mcrf.2011.1.1

[19]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[20]

Zhengce Zhang, Yanyan Li. Gradient blowup solutions of a semilinear parabolic equation with exponential source. Communications on Pure & Applied Analysis, 2013, 12 (1) : 269-280. doi: 10.3934/cpaa.2013.12.269

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]