May  2013, 7(2): 445-470. doi: 10.3934/ipi.2013.7.445

Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities

1. 

Inria (CORIDA Team), Villers-lès-Nancy, F-54600, France

2. 

Mathematics Department, US Naval Academy, 572C Holloway Road, Annapolis, MD 21402-5002, United States

3. 

Université de Lorraine, IECL, UMR 7502, Vandoeuvre-les-Nancy, F-54506, France

Received  November 2011 Revised  February 2013 Published  May 2013

Based on the time-harmonic far field model for small dielectric inclusions in $3$D, we study the so-called DORT method (DORT is the French acronym for ``Diagonalization of the Time Reversal Operator''). The main observation is to relate the eigenfunctions of the time-reversal operator to the location of small scattering inclusions. For non penetrable sound-soft acoustic scatterers, this observation has been rigorously proved for $2$ and $3$ dimensions by Hazard and Ramdani in [21] for small scatterers. In this work, we consider the case of small dielectric inclusions with far field measurements. The main difference with the acoustic case is related to the magnetic permeability and the related polarization tensors. We show that in the regime $kd\rightarrow \infty$ ($k$ denotes here the wavenumber and $d$ the minimal distance between the scatterers), each inhomogeneity gives rise to -at most- 4 distinct eigenvalues (one due to the electric contrast and three to the magnetic one) while each corresponding eigenfunction generates an incident wave focusing selectively on one of the scatterers. The method has connections to the MUSIC algorithm known in Signal Processing and the Factorization Method of Kirsch.
Citation: Corinna Burkard, Aurelia Minut, Karim Ramdani. Far field model for time reversal and application to selective focusing on small dielectric inhomogeneities. Inverse Problems & Imaging, 2013, 7 (2) : 445-470. doi: 10.3934/ipi.2013.7.445
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", 55 of National Bureau of Standards Applied Mathematics Series, 55 (1964).   Google Scholar

[2]

H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, Music-type electromagnetic imaging of a collection of small three-dimensional inclusions,, SIAM J. Sci. Comput., 29 (2007), 674.  doi: 10.1137/050640655.  Google Scholar

[3]

H. Ammari, E. Iakovleva and S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,, SIAM J. Math. Anal., 34 (2003), 882.  doi: 10.1137/S0036141001392785.  Google Scholar

[4]

X. Antoine, B. Pinçon, K. Ramdani and B. Thierry, Far field modeling of electromagnetic time reversal and application to selective focusing on small scatterers,, SIAM J. Appl. Math., 69 (2008), 830.  doi: 10.1137/080715779.  Google Scholar

[5]

T. Arens, A. Lechleiter and D. R. Luke, Music for extended scatterers as an instance of the factorization method,, SIAM J. Appl. Math., 70 (2009), 1283.  doi: 10.1137/080737836.  Google Scholar

[6]

C. Ben Amar, N. Gmati, C. Hazard and K. Ramdani, Numerical simulation of acoustic time reversal mirrors,, SIAM J. Appl. Math., 67 (2007), 777.  doi: 10.1137/060654542.  Google Scholar

[7]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75.  doi: 10.1137/07069290X.  Google Scholar

[8]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75.  doi: 10.1137/07069290X.  Google Scholar

[9]

D. H. Chambers and J. G. Berryman, Target characterization using decomposition of the time-reversal operator: Electromagnetic scattering from small ellipsoids,, Inverse Problems, 22 (2006), 2145.  doi: 10.1088/0266-5611/22/6/014.  Google Scholar

[10]

Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085001.  Google Scholar

[11]

M. Cheney, The linear sampling method and the {MUSIC algorithm},, Inverse Problems, 17 (2001), 591.  doi: 10.1088/0266-5611/17/4/301.  Google Scholar

[12]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003).  doi: 10.1088/0266-5611/19/6/057.  Google Scholar

[13]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[14]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Springer-Verlag, (1998).   Google Scholar

[15]

A. Devaney, E. Marengo and F. Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets,, J. Acoust. Soc. Amer., 118 (2005), 3129.  doi: 10.1121/1.2042987.  Google Scholar

[16]

A. Fannjiang, On time reversal mirrors,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/9/095010.  Google Scholar

[17]

M. Fink, Acoustic time-reversal mirrors,, in, (2002), 17.   Google Scholar

[18]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter and J.-L. Thomas, Time-reversed acoustics,, Rep. Prog. Phys., 63 (2000), 1933.   Google Scholar

[19]

M. Fink and C. Prada, Acoustic time-reversal mirrors,, Inverse Problems, 17 (2001), 1761.   Google Scholar

[20]

N. A. Gumerov and R. Duraiswami, Computation scattering from n spheres using multipole reexpansion,, J. Acoust. Soc. Amer., 112 (2002), 2688.  doi: 10.1121/1.1517253.  Google Scholar

[21]

C. Hazard and K. Ramdani, Selective acoustic focusing using time-harmonic reversal mirrors,, SIAM J. Appl. Math., 64 (2004), 1057.  doi: 10.1137/S0036139903428732.  Google Scholar

[22]

S. Hou, K. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[23]

E. Iakovleva and D. Lesselier, Multistatic response matrix of spherical scatterers and the back-propagation of singular fields,, IEEE Trans. Antenna. Prop., 56 (2008), 825.  doi: 10.1109/TAP.2008.916913.  Google Scholar

[24]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489.  doi: 10.1088/0266-5611/14/6/009.  Google Scholar

[25]

A. Kirsch, Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413.  doi: 10.1088/0266-5611/15/2/005.  Google Scholar

[26]

A. Kirsch, New characterizations of solutions in inverse scattering theory,, Appl. Anal., 76 (2000), 319.  doi: 10.1080/00036810008840888.  Google Scholar

[27]

A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025.  doi: 10.1088/0266-5611/18/4/306.  Google Scholar

[28]

R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,, Quart. J. Mech. Appl. Math., 38 (1985), 323.  doi: 10.1093/qjmam/38.2.323.  Google Scholar

[29]

G. Micolau, "Etude Théorique et Numérique de la Méthode de la Décomposition de L'opérateur de Retournement Temporel (D.O.R.T.) en Diffraction ÉlectromagnÉtique,", Ph.D thesis, (2001).   Google Scholar

[30]

B. Pinçon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors,, Inverse Problems, 23 (2007), 1.  doi: 10.1088/0266-5611/23/1/001.  Google Scholar

[31]

C. Prada, S. Manneville, D. Spoliansky and M. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatterers,, J. Acoust. Soc. Am., 99 (1996), 2067.  doi: 10.1121/1.415393.  Google Scholar

[32]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton University Press, (1993).   Google Scholar

[33]

B. Thierry, "Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple,", Ph.D thesis, (2011).   Google Scholar

[34]

H. Tortel, G. Micolau and M. Saillard, Decomposition of the time reversal operator for electromagnetic scattering,, J. Electromagn. Waves Appl., 13 (1999), 687.  doi: 10.1163/156939399X01113.  Google Scholar

[35]

R. Wong, "Asymptotic Approximations of Integrals,", 34 of Classics in Applied Mathematics, 34 (2001).  doi: 10.1137/1.9780898719260.  Google Scholar

[36]

A. Zaanen, "Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations,", Interscience Publishers Inc., (1953).   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", 55 of National Bureau of Standards Applied Mathematics Series, 55 (1964).   Google Scholar

[2]

H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, Music-type electromagnetic imaging of a collection of small three-dimensional inclusions,, SIAM J. Sci. Comput., 29 (2007), 674.  doi: 10.1137/050640655.  Google Scholar

[3]

H. Ammari, E. Iakovleva and S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency,, SIAM J. Math. Anal., 34 (2003), 882.  doi: 10.1137/S0036141001392785.  Google Scholar

[4]

X. Antoine, B. Pinçon, K. Ramdani and B. Thierry, Far field modeling of electromagnetic time reversal and application to selective focusing on small scatterers,, SIAM J. Appl. Math., 69 (2008), 830.  doi: 10.1137/080715779.  Google Scholar

[5]

T. Arens, A. Lechleiter and D. R. Luke, Music for extended scatterers as an instance of the factorization method,, SIAM J. Appl. Math., 70 (2009), 1283.  doi: 10.1137/080737836.  Google Scholar

[6]

C. Ben Amar, N. Gmati, C. Hazard and K. Ramdani, Numerical simulation of acoustic time reversal mirrors,, SIAM J. Appl. Math., 67 (2007), 777.  doi: 10.1137/060654542.  Google Scholar

[7]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75.  doi: 10.1137/07069290X.  Google Scholar

[8]

L. Borcea, G. Papanicolaou and F. G. Vasquez, Edge illumination and imaging of extended reflectors,, SIAM J. Imaging Sciences, 1 (2008), 75.  doi: 10.1137/07069290X.  Google Scholar

[9]

D. H. Chambers and J. G. Berryman, Target characterization using decomposition of the time-reversal operator: Electromagnetic scattering from small ellipsoids,, Inverse Problems, 22 (2006), 2145.  doi: 10.1088/0266-5611/22/6/014.  Google Scholar

[10]

Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085001.  Google Scholar

[11]

M. Cheney, The linear sampling method and the {MUSIC algorithm},, Inverse Problems, 17 (2001), 591.  doi: 10.1088/0266-5611/17/4/301.  Google Scholar

[12]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003).  doi: 10.1088/0266-5611/19/6/057.  Google Scholar

[13]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region,, Inverse Problems, 12 (1996), 383.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[14]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Springer-Verlag, (1998).   Google Scholar

[15]

A. Devaney, E. Marengo and F. Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets,, J. Acoust. Soc. Amer., 118 (2005), 3129.  doi: 10.1121/1.2042987.  Google Scholar

[16]

A. Fannjiang, On time reversal mirrors,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/9/095010.  Google Scholar

[17]

M. Fink, Acoustic time-reversal mirrors,, in, (2002), 17.   Google Scholar

[18]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter and J.-L. Thomas, Time-reversed acoustics,, Rep. Prog. Phys., 63 (2000), 1933.   Google Scholar

[19]

M. Fink and C. Prada, Acoustic time-reversal mirrors,, Inverse Problems, 17 (2001), 1761.   Google Scholar

[20]

N. A. Gumerov and R. Duraiswami, Computation scattering from n spheres using multipole reexpansion,, J. Acoust. Soc. Amer., 112 (2002), 2688.  doi: 10.1121/1.1517253.  Google Scholar

[21]

C. Hazard and K. Ramdani, Selective acoustic focusing using time-harmonic reversal mirrors,, SIAM J. Appl. Math., 64 (2004), 1057.  doi: 10.1137/S0036139903428732.  Google Scholar

[22]

S. Hou, K. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[23]

E. Iakovleva and D. Lesselier, Multistatic response matrix of spherical scatterers and the back-propagation of singular fields,, IEEE Trans. Antenna. Prop., 56 (2008), 825.  doi: 10.1109/TAP.2008.916913.  Google Scholar

[24]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489.  doi: 10.1088/0266-5611/14/6/009.  Google Scholar

[25]

A. Kirsch, Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413.  doi: 10.1088/0266-5611/15/2/005.  Google Scholar

[26]

A. Kirsch, New characterizations of solutions in inverse scattering theory,, Appl. Anal., 76 (2000), 319.  doi: 10.1080/00036810008840888.  Google Scholar

[27]

A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025.  doi: 10.1088/0266-5611/18/4/306.  Google Scholar

[28]

R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,, Quart. J. Mech. Appl. Math., 38 (1985), 323.  doi: 10.1093/qjmam/38.2.323.  Google Scholar

[29]

G. Micolau, "Etude Théorique et Numérique de la Méthode de la Décomposition de L'opérateur de Retournement Temporel (D.O.R.T.) en Diffraction ÉlectromagnÉtique,", Ph.D thesis, (2001).   Google Scholar

[30]

B. Pinçon and K. Ramdani, Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors,, Inverse Problems, 23 (2007), 1.  doi: 10.1088/0266-5611/23/1/001.  Google Scholar

[31]

C. Prada, S. Manneville, D. Spoliansky and M. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatterers,, J. Acoust. Soc. Am., 99 (1996), 2067.  doi: 10.1121/1.415393.  Google Scholar

[32]

E. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton University Press, (1993).   Google Scholar

[33]

B. Thierry, "Analyse et Simulations Numériques du Retournement Temporel et de la Diffraction Multiple,", Ph.D thesis, (2011).   Google Scholar

[34]

H. Tortel, G. Micolau and M. Saillard, Decomposition of the time reversal operator for electromagnetic scattering,, J. Electromagn. Waves Appl., 13 (1999), 687.  doi: 10.1163/156939399X01113.  Google Scholar

[35]

R. Wong, "Asymptotic Approximations of Integrals,", 34 of Classics in Applied Mathematics, 34 (2001).  doi: 10.1137/1.9780898719260.  Google Scholar

[36]

A. Zaanen, "Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations,", Interscience Publishers Inc., (1953).   Google Scholar

[1]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[4]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[5]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[6]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[7]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[8]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[11]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[12]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[13]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[14]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[15]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[16]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[17]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[18]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[19]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[20]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]