\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Detecting small low emission radiating sources

Abstract Related Papers Cited by
  • In order to prevent influx of highly enriched nuclear material throu-gh border checkpoints, new advanced detection schemes need to be developed. Typical issues faced in this context are sources with very low emission against a dominating natural background radiation. Sources are expected to be small and shielded and hence cannot be detected from measurements of radiation levels alone. We consider collimated and Compton-type measurements and propose a detection method that relies on the geometric singularity of small sources to distinguish them from the more uniform background. The method is characterized by high sensitivity and specificity and allows for assigning confidence probabilities of detection. The validity of our approach can be justified using properties of related techniques from medical imaging. Results of numerical simulations are presented for collimated and Compton-type measurements. The 2D case is considered in detail.
    Mathematics Subject Classification: Primary: 82D75, 35R30; Secondary: 81U40, 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Basko, G. L. Zeng and G. T. Gullberg, Analytical reconstruction formula for one-dimensional compton camera, IEEE Transactions on Nuclear Science, 44 (1997), 1342-1346.

    [2]

    R. Basko, G. L. Zeng and G. T. Gullberg, Application of spherical harmonics to image reconstruction for the compton camera, Physics in Medicine and Biology, 43 (1998), 887-894.

    [3]

    R. R. Brechner and M. Singh, Iterative reconstruction of electronically collimated spect images, IEEE Transactions on Nuclear Science, 37 (1990), 1328-1332.

    [4]

    T. F. Budinger, G. T. Gullberg and R. H. Huseman, Emission computed tomography, in "Image Reconstruction from Projections'' (ed. G. Herman), Springer Verlag, (1979), 147-246.

    [5]

    W. Charlton and G. Spence, Private communication, 2009.

    [6]

    N. H. Clinthorne, Chor-Yi Ng, Chia-Ho Hua, J. E. Gormley, J. W. LeBlanc, S. J. Wilderman and W. L. Rogers, Theoretical performance comparison of a compton-scatter aperture and parallel-hole collimator, in "Nuclear Science Symposium, Conference Record," 2, IEEE, (1996), 788-792.

    [7]

    S. Coles, "An Introduction to Statistical Modeling of Extreme Values," Springer Series in Statistics, Springer-Verlag London, Ltd., London, 2001.

    [8]

    M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera based on compton scattering, IEEE Transactions on Medical Imaging, 13 (1994), 398-407.

    [9]

    Y. F. Du, Z. He, G. F. Knoll, D. K. Wehe and W. Li, Evaluation of a compton scattering camera using 3-D position sensitive CdZnTe detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457 (2001), 203-211.

    [10]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

    [11]

    A. Faridani, E. L. Ritman and K. T. Smith, Local tomography, SIAM Journal on Applied Mathematics, 52 (1992), 459-484.doi: 10.1137/0152026.

    [12]

    T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, 27 (2006), 861-874.

    [13]

    G. T. Gullberg, G. L. Zeng and R. Basko, Image reconstruction from v-projections acquired by compton camera, US Patent 5841141, 1998.

    [14]

    D. L. Gunter, Filtered back-projection algorithm for compton telescopes, US Patent 7345283, 2008.

    [15]

    T. Hebert, R. Leahy and M. Singh, Three-dimensional maximum-likelihood reconstruction for an electronically collimated single-photon-emission, Journal of the Optical Society of America A, 7 (1990), 1305-1313.

    [16]

    W. H. Hill and K. L. Matthews, Experimental verification of a hand held electronically-collimated radiation detector, in "Nuclear Science Symposium Conference Record, 2007," IEEE, 5 (2007), 3792-3797.

    [17]

    M. Hirasawa and T. Tomitani, An analytical image reconstruction algorithm to compensate for scattering angle broadening in compton cameras, Physics in Medicine and Biology, 48 (2003), 1009-1026.

    [18]

    Y. Hristova, "Mathematical Problems of Thermoacoustic and Compton Camera Imaging," Ph.D thesis, Texas A&M University, 2010.

    [19]

    A. C. Kak and M. Slaney, "Principles of Computerized Tomographic Imaging," IEEE Press, New York, 1988.

    [20]

    P. Kuchment, Generalized transforms of radon type and their applications, in "The Radon Transform, Inverse Problems, and Tomography" (eds. G. Olafsson and E. T. Quinto), Proc. Sympos. Appl. Math., 63, American Mathematical Society, Providence, RI, (2006), 67-91.

    [21]

    P. Kuchment, K. Lancaster and L. Mogilevskaya, On local tomography, Inverse Problems, 11 (1995), 571-589.

    [22]

    A. W. Lackie, K. L. Matthews, B. M. Smith, W. Hill, Wei-Hsung Wang and M. L. Cherry, A directional algorithm for an electronically-collimated gamma-ray detector, in "Nuclear Science Symposium Conference Record, 2006," 1, IEEE, (2006), 264-269.

    [23]

    J. W. LeBlanc, N. H. Clinthorne, C.-H. Hua, E. Nygard, W. L. Rogers, D. K. Wehe, P. Weilhammer and S. J. Wilderman, C-sprint: A prototype compton camera system for low energy gamma ray imaging, in "Nuclear Science Symposium, 1997," 1, IEEE, (1997), 357-361.

    [24]

    C. M. Marianno, D. R. Boyle, W. S. Charlton, G. M. Gaukler and A. Veditz, A guide for detector development and deployment, in "51st Annual Meeting of the Institute of Nuclear Materials Management 2010," Curran Associates, Inc., (2010), 3901-3909.

    [25]

    V. Maxim, M. Frandeş and R. Prost, Analytical inversion of the Compton transform using the full set of available projections, Inverse Problems, 25 (2009), 095001, 21 pp.doi: 10.1088/0266-5611/25/9/095001.

    [26]

    F. Natterer, "The Mathematics of Computerized Tomography," Society for Industrial and Applied Mathematics, 2001.doi: 10.1137/1.9780898719284.

    [27]

    F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction," Reprint of the 1986 original, Classics in Applied Mathematics, 32, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.

    [28]

    M. K. Nguyen, T. T. Truong and P. Grangeat, Radon transforms on a class of cones with fixed axis direction, Journal of Physics A: Mathematical and General, 38 (2005), 8003-8015.doi: 10.1088/0305-4470/38/37/006.

    [29]

    L. C. Parra, Reconstruction of cone-beam projections from compton scattered data, IEEE Transactions on Nuclear Science, 47 (2000), 1543-1550.

    [30]

    R. C. Rohe, M. M. Sharfi, K. A. Kecevar, J. D. Valentine and C. Bonnerave, The spatially-variant backprojection point kernel function of an energy-subtraction compton scatter camera for medical imaging, IEEE Transactions on Nuclear Science, 44 (1997), 2477-2482.

    [31]

    G. J. Royle and R. D. Speller, A flexible geometry compton camera for industrial gamma ray imaging, in "Nuclear Science Symposium, 1996. Conference Record.," 2, IEEE, (1996), 821-824.

    [32]

    G. J. Royle and R. D. Speller, Compton scatter imaging of a nuclear industry site, in "Nuclear Science Symposium, 1997," 1, IEEE, (1997), 365-368.

    [33]

    A. C. Sauve, A. O. III Hero, W. L. Rogers, S. J. Wilderman and N. H. Clinthorne, 3D image reconstruction for a compton spect camera model, IEEE Transactions on Nuclear Science, 46 (1999), 2075-2084.

    [34]

    V. Schoenfelder, H. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A. Deerenberg, R. Diehl, A. von Dordrecht, J. W. den Herder, W. Hermsen, M. Kippen, L. Kuiper, G. Lichti, J. Lockwood, J. Macri, M. McConnell, D. Morris, R. Much, J. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A. Strong, B. N. Swanenburg, B. Taylor, C. de Vries and C. Winkler, Instrument description and performance of the imaging gamma-ray telescope comptel aboard the compton gamma-ray observatory, Astrophysical Journal Supplement Series, 86 (1993), 657-692.

    [35]

    M. Singh, An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria, Medical Physics, 10 (1983), 421-427.

    [36]

    M. Singh and D. Doria, An electronically collimated gamma camera for single photon emission computed tomography. Part II: Image reconstruction and preliminary experimental measurements, Medical Physics, 10 (1983), 428-435.

    [37]

    B. Smith, Reconstruction methods and completeness conditions for two compton data models, Journal of the Optical Society of America A, 22 (2005), 445-459.

    [38]

    G. Spence, G. Ford, R. Vanderplas and W. Charlton, Directionally sensitive neutron detectors using boron loaded semiconductors, in "50th Annual Meeting of the Institute of Nuclear Materials Management 2009. INMM 50th Annual Meeting," Curran Associates, Inc., (2009), 224-231.

    [39]

    R. W. Todd, J. M. Nightingale and D. B. Everett, A proposed gamma camera, Nature, 251 (1974), 132-134.

    [40]

    T. Tomitani and M. Hirasawa, Image reconstruction from limited angle compton camera data, Physics in Medicine and Biology, 47 (2002), 2129-2145.

    [41]

    T. T. Truong, M. K. Nguyen and H. ZaidiThe mathematical foundations of 3D compton scatter emission imaging, International Journal of Biomedical Imaging, 2007, 11 pp.

    [42]

    S. Watanabe, T. Tanaka, K. Nakazawa, T. Mitani, K. Oonuki, T. Takahashi, T. Takashima, H. Tajima, Y. Fukazawa, M. Nomachi, S. Kubo, M. Onishi and Y. Kuroda, A Si/CdTe semiconductor compton camera, IEEE Transactions on Nuclear Science, 52 (2005), 2045-2051.

    [43]

    S. J. Wilderman, W. L. Rogers, G. F. Knoll and J. C. Engdahl, Fast algorithm for list mode back-projection of compton scatter camera data, IEEE Transactions on Nuclear Science, 45 (1998), 957-962.

    [44]

    X. Xun, B. Mallick, R. J. Carroll and P. Kuchment, A Bayesian approach to the detection of small low emission sources, Inverse Problems, 27 (2011), 115009, 11 pp.doi: 10.1088/0266-5611/27/11/115009.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(162) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return