May  2013, 7(2): 471-490. doi: 10.3934/ipi.2013.7.471

Source identification from line integral measurements and simple atmospheric models

1. 

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, United States

2. 

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2370, United States

3. 

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109

Received  May 2011 Revised  August 2012 Published  May 2013

We consider the problem of estimating the sparse initial condition of a solution to the advection-diffusion equation based on line integrals of the solution at a later time. We propose models for locating a single and multiple point sources. We also propose algorithms for the efficient implementation of these models. In practice, the models are relevant also for reconstructing the solution of the PDE at the observation time from a very sparse Radon transform; in this case, our models improve on more standard Radon inversion techniques by utilizing the specialized information about how the observed function was generated.
Citation: Brittan Farmer, Cassandra Hall, Selim Esedoḡlu. Source identification from line integral measurements and simple atmospheric models. Inverse Problems and Imaging, 2013, 7 (2) : 471-490. doi: 10.3934/ipi.2013.7.471
References:
[1]

V. Akçelik, G. Biros, A. Draganeascu, J. Hill, O. Ghattas and B. van Bloemen Waanders, Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants, in "Proceedings of the 2005 ACM/IEEE conference on Supercomputing," IEEE Computer Society, (2005), 43-57. doi: 10.1109/SC.2005.25.

[2]

V. Akçelik, G. Biros, O. Ghattas, K. R. Long and B. van Bloemen Waanders, A variational finite element method for source inversion for convective-diffusive transport, Finite Elem. Anal. Des., 39 (2003), 683-705. doi: 10.1016/S0168-874X(03)00054-4.

[3]

A. El Badia and T. Ha Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Problems, 14 (1998), 883-891. doi: 10.1088/0266-5611/14/4/008.

[4]

A. El Badia, T. Ha Duong and A. Hamdi, Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem, Inverse Problems, 21 (2005), 1121-1136. doi: 10.1088/0266-5611/21/3/020.

[5]

A. Blake and A. Zisserman, "Visual Reconstruction," MIT Press, Cambridge, MA, 1987.

[6]

M. Burger, Y. Landa, N. M. Tanushev and R. Tsai, Discovering a point source in unknown environments, in "Algorithmic Foundation of Robotics VII" (eds. G. S. Chirikjian, H. Choset, M. Morales and T. Murphy), Springer, (2009), 663-678. doi: 10.1007/978-3-642-00312-7_41.

[7]

E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), 4203-4215. doi: 10.1109/TIT.2005.858979.

[8]

T. F. Chan and H.-M. Zhou, Total variation wavelet thresholding, J. Sci. Comput., 32 (2007), 315-341. doi: 10.1007/s10915-007-9133-0.

[9]

R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, Signal Processing Letters, 14 (2007), 707-710. doi: 10.1109/LSP.2007.898300.

[10]

R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/3/035020.

[11]

B. R. Cosofret, C. M. Gittins and W. J. Marinelli, Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry, in "Proc. SPIE: Chemical and Biological Standoff Detection II" (eds. J. O. Jensen and J.-M. Theriault), SPIE, (2004), 112-121. doi: 10.1117/12.570442.

[12]

D. L. Donoho, Sparse components of images and optimal atomic decompositions, Constructive Approximation, 17 (2001), 353-382. doi: 10.1007/s003650010032.

[13]

C. M. Gittins and W. J. Marinelli, AIRIS multispectral imaging chemical sensor, in "Proc. SPIE: Electro-Optical Technology for Remote Chemical Detection and Identification III" (eds. M. Fallahi and E. A. Howden), SPIE, (1998), 65-74. doi: 10.1117/12.317637.

[14]

E. T. Hale, W. Yin and Y. Zhang, Fixed-point continuation for $l_1$-minimization: Methodology and convergence, SIAM J. Optim., 19 (2008), 1107-1130. doi: 10.1137/070698920.

[15]

J. P. Kernévez, "The Sentinel Method and Its Application to Environmental Pollution Problems," CRC Press, New York, 1997.

[16]

Y. Landa, H. Shen, R. Takei and Y.-H. R. Tsai, Autonomous source discovery and navigation in complicated environments, UCLA CAM Report, (2009), 09-73.

[17]

Y. Li, S. Osher and R. Tsai, Heat source identification based on $L_1$ constrained minimization, UCLA CAM Report, (2011), 11-04.

[18]

L. Ling, M. Yamamoto, Y. C. Hon and T. Takeuchi, Identification of source locations in two-dimensional heat equations, Inverse Problems, 22 (2006), 1289-1305. doi: 10.1088/0266-5611/22/4/011.

[19]

J. L. Lions, Pointwise control for distributed systems, in "Control and Estimation in Distributed Parameters Systems" (ed. H. T. Banks), SIAM, (1992), 1-39. doi: 10.1137/1.9781611970982.ch1.

[20]

J. Rauch, "Partial Differential Equations," Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.

show all references

References:
[1]

V. Akçelik, G. Biros, A. Draganeascu, J. Hill, O. Ghattas and B. van Bloemen Waanders, Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants, in "Proceedings of the 2005 ACM/IEEE conference on Supercomputing," IEEE Computer Society, (2005), 43-57. doi: 10.1109/SC.2005.25.

[2]

V. Akçelik, G. Biros, O. Ghattas, K. R. Long and B. van Bloemen Waanders, A variational finite element method for source inversion for convective-diffusive transport, Finite Elem. Anal. Des., 39 (2003), 683-705. doi: 10.1016/S0168-874X(03)00054-4.

[3]

A. El Badia and T. Ha Duong, Some remarks on the problem of source identification from boundary measurements, Inverse Problems, 14 (1998), 883-891. doi: 10.1088/0266-5611/14/4/008.

[4]

A. El Badia, T. Ha Duong and A. Hamdi, Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem, Inverse Problems, 21 (2005), 1121-1136. doi: 10.1088/0266-5611/21/3/020.

[5]

A. Blake and A. Zisserman, "Visual Reconstruction," MIT Press, Cambridge, MA, 1987.

[6]

M. Burger, Y. Landa, N. M. Tanushev and R. Tsai, Discovering a point source in unknown environments, in "Algorithmic Foundation of Robotics VII" (eds. G. S. Chirikjian, H. Choset, M. Morales and T. Murphy), Springer, (2009), 663-678. doi: 10.1007/978-3-642-00312-7_41.

[7]

E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), 4203-4215. doi: 10.1109/TIT.2005.858979.

[8]

T. F. Chan and H.-M. Zhou, Total variation wavelet thresholding, J. Sci. Comput., 32 (2007), 315-341. doi: 10.1007/s10915-007-9133-0.

[9]

R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, Signal Processing Letters, 14 (2007), 707-710. doi: 10.1109/LSP.2007.898300.

[10]

R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/3/035020.

[11]

B. R. Cosofret, C. M. Gittins and W. J. Marinelli, Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry, in "Proc. SPIE: Chemical and Biological Standoff Detection II" (eds. J. O. Jensen and J.-M. Theriault), SPIE, (2004), 112-121. doi: 10.1117/12.570442.

[12]

D. L. Donoho, Sparse components of images and optimal atomic decompositions, Constructive Approximation, 17 (2001), 353-382. doi: 10.1007/s003650010032.

[13]

C. M. Gittins and W. J. Marinelli, AIRIS multispectral imaging chemical sensor, in "Proc. SPIE: Electro-Optical Technology for Remote Chemical Detection and Identification III" (eds. M. Fallahi and E. A. Howden), SPIE, (1998), 65-74. doi: 10.1117/12.317637.

[14]

E. T. Hale, W. Yin and Y. Zhang, Fixed-point continuation for $l_1$-minimization: Methodology and convergence, SIAM J. Optim., 19 (2008), 1107-1130. doi: 10.1137/070698920.

[15]

J. P. Kernévez, "The Sentinel Method and Its Application to Environmental Pollution Problems," CRC Press, New York, 1997.

[16]

Y. Landa, H. Shen, R. Takei and Y.-H. R. Tsai, Autonomous source discovery and navigation in complicated environments, UCLA CAM Report, (2009), 09-73.

[17]

Y. Li, S. Osher and R. Tsai, Heat source identification based on $L_1$ constrained minimization, UCLA CAM Report, (2011), 11-04.

[18]

L. Ling, M. Yamamoto, Y. C. Hon and T. Takeuchi, Identification of source locations in two-dimensional heat equations, Inverse Problems, 22 (2006), 1289-1305. doi: 10.1088/0266-5611/22/4/011.

[19]

J. L. Lions, Pointwise control for distributed systems, in "Control and Estimation in Distributed Parameters Systems" (ed. H. T. Banks), SIAM, (1992), 1-39. doi: 10.1137/1.9781611970982.ch1.

[20]

J. Rauch, "Partial Differential Equations," Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0953-9.

[1]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[2]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[3]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200

[4]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435

[5]

Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

[6]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[7]

Ying Zhang, Ling Ma, Zheng-Hai Huang. On phaseless compressed sensing with partially known support. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1519-1526. doi: 10.3934/jimo.2019014

[8]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[9]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[10]

Patrick Henning, Mario Ohlberger. A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1393-1420. doi: 10.3934/dcdss.2016056

[11]

Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022017

[12]

Zohre Aminifard, Saman Babaie-Kafaki. Diagonally scaled memoryless quasi–Newton methods with application to compressed sensing. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021191

[13]

Shousheng Luo, Tie Zhou. Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT). Inverse Problems and Imaging, 2014, 8 (1) : 223-246. doi: 10.3934/ipi.2014.8.223

[14]

Vikram Krishnamurthy, William Hoiles. Information diffusion in social sensing. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 365-411. doi: 10.3934/naco.2016017

[15]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[16]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems and Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[17]

Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495

[18]

Linfei Wang, Dapeng Tao, Ruonan Wang, Ruxin Wang, Hao Li. Big Map R-CNN for object detection in large-scale remote sensing images. Mathematical Foundations of Computing, 2019, 2 (4) : 299-314. doi: 10.3934/mfc.2019019

[19]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure and Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[20]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

[Back to Top]