May  2013, 7(2): 499-521. doi: 10.3934/ipi.2013.7.499

A geometry guided image denoising scheme

1. 

10900 Euclid Avenue, Cleveland, OH 44106-7058, United States, United States

Received  August 2011 Revised  January 2013 Published  May 2013

During image denoising, it is often difficult to balance between the removal of noise and the preservation of contrast and fine features, especially when the noise is excessive. We propose to efficiently balance the two using segmentation and more general geometry extraction transforms. Explained in the nonlocal-means (NL-means) framework, we introduce a mutual position function to ensure the averaging is only taken over pixels in the same segmentation phase, and provide selection schemes for convolution kernel and weight function to further improve the performance. To address unreliable segmentation due to more excessive noise, we use a feature extraction transform that is more general than segmentation and less sensitive to noise. Unlike most denoising approaches that only work for one type of noise and/or involve heuristic parameter tuning, the proposed method comes with an automatic parameter selection scheme, and can be easily adapted for various types of noise, ranging from Gaussian, Poisson, Rician to ultrasound noise. Comparison with the original NL-means as well as ROF, BM3D, and K-SVD on various simulated data, MRI and SEM images, indicates potentials of the proposed method.
Citation: Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems and Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499
References:
[1]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685. doi: 10.1002/cpa.3160420503.

[2]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639. doi: 10.1109/34.56205.

[3]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[4]

M. Bertalmio, V. Caselles, B. Rougé and A. Solé, TV based image restoration with local constraints, Journal of Scientific Computing, 19 (2003), 95-122. doi: 10.1023/A:1025391506181.

[5]

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1984), 721-741.

[6]

P. Saint-Marc, J. S. Chen and G. Medioni, Adaptive smoothing: A general tool for early vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (1991), 514-529.

[7]

S. M. Smith and J. M. Brady, SUSAN - A new approach to low level image processing, International Journal of Computer Vision, 23 (1995), 45-78.

[8]

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in "Proceedings of Sixth International Conference on Computer Vision," (1998), 839-846. doi: 10.1109/ICCV.1998.710815.

[9]

M. Elad, On the origin of the bilateral filter and ways to improve it, IEEE Transactions on Image Processing, 11 (2002), 1141-1151. doi: 10.1109/TIP.2002.801126.

[10]

S. Durand and J. Froment, Reconstruction of wavelet coefficients using total variation minimization, SIAM J. Sci. Comput., 24 (2003), 1754-1767. doi: 10.1137/S1064827501397792.

[11]

A. Buades, B. Coll and J. M. Morel, A non-local algorithm for image denoising, IEEE Computer Society, 2 (2005), 60-65. doi: 10.1109/CVPR.2005.38.

[12]

S. Kindermann, S. Osher and P. W. Jones, Deblurring and Denoising of Images by Nonlocal Functionals, Multiscale Modelling and Simulation, 4 (2005), 1091-1115. doi: 10.1137/050622249.

[13]

T. Brox and D. Cremers, Iterated nonlocal means for texture restoration, Scale Space and Variational Methods in Computer Vision, (2008), 13-24. doi: 10.1007/978-3-540-72823-8_2.

[14]

C. Kervrann, J. Boulanger and P. Coupé, Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal, Scale Space and Variational Methods in Computer Vision, (2007), 520-532. doi: 10.1007/978-3-540-72823-8_45.

[15]

B. Goossens, Q. Luong, A. Pizurica and W. Philips, An improved non-local denoising algorithm, in "Local and Non-Local Approximation in Image Processing, International Workshop, Proceedings," (2008).

[16]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), 1005-1028. doi: 10.1137/070698592.

[17]

C-A. Deledalle, L. Denis and F. Tupin, Iterative wieghted maximum likelihood denoising with probabilistic patch-based weights, Transactions on Image Processing, 18 (2009), 2661-2672. doi: 10.1109/TIP.2009.2029593.

[18]

D. Peter, V. Govindan and A. Mathew, Nonlocal-means image denoising techonology using robust M-estimator, Journal of Computer Science and Technology, 25 (2010), 623-631.

[19]

N. Wiest-Daesslé, S. Prima, P. Coupé, S. P. Morrissey and C. Barillot, Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: Applications to DT-MRI, in "Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention," (2008), 171-179. doi: 10.1007/978-3-540-85990-1_21.

[20]

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann and C. Barillot, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, Medical Imaging, IEEE Transactions on, 27 (2008), 425-441. doi: 10.1109/TMI.2007.906087.

[21]

C-A. Deledalle, F. Tupin and L. Denis, Poisson NL means: Unsupervised non local means for Poisson noise, in "Proc. of ICIP", Hongkong, (2010). doi: 10.1109/ICIP.2010.5653394.

[22]

S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.

[23]

T. F. Chan and L. A. Vese, Active contours without edges, Image Processing, IEEE Transactions on, 10 (2001), 266-277. doi: 10.1109/83.902291.

[24]

L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision, 50 (2002), 271-293.

[25]

K. Krishnamoorthy, "Handbook of Statistical Distributions with Applications," Chapman and Hall/CRC Press, London/Boca Raton, 2006. doi: 10.1201/9781420011371.

[26]

T. Gasser, L. Sroka and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika, 73 (1986), 625-633. doi: 10.1093/biomet/73.3.625.

[27]

M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing, 14 (2005), 2091-2106. doi: 10.1109/TIP.2005.859376.

[28]

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, Image Processing, IEEE Transactions on, 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861.

[29]

E. Candés and D. Donoho, "Curvelets: A Surprisingly Effective Nonadaptive Representation of Objects with Edges," in "Curves and Surfaces" (eds. L. L. Schumaker et al. ), Vanderbilt University Press, Nashville, TN.

[30]

K. Guo, G. Kutyniok and D. Labate, "Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators," Wavelets and Splines (Athens, GA, 2005), Nashboro Press, Nashville, TN.

[31]

E. A. Nadaraya, On estimating regression, Theory Probab. Appl., 9 (1964), 141-142. doi: 10.1137/1109020.

[32]

F. J. Anscombe, The transformation of Poisson, binomial and negative-binomial data, Biometrika, 35 (1948), 246-254.

[33]

M. D. DeVore, A. D. Lanterman and J. A. O'Sullivan, ATR performance of a rician model for SAR images, in "Automatic Target Recognition X, Proc. SPIE 4050," (2000), 34-45. doi: 10.1117/12.395589.

[34]

J. Sijbers, A. J. Den Dekker, P. Scheunders and D. Van Dyck, Maximum-likelihood estimation of Rician distribution parameters, Medical Imaging, IEEE Transactions on, 17 (1998), 357-361. doi: 10.1109/42.712125.

[35]

T. Loupas, W. N. McDicken and P. L. Allan, An adaptive weighted median filter for speckle suppression in medical ultrasonic images, Circuits and Systems, IEEE Transactions on, 36 (1989), 129-135. doi: 10.1109/31.16577.

[36]

K. Krissian, Speckle-constrained anisotropic diffusion for ultrasound images, in "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition," (2005), 547-552.

[37]

K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising with block-matching and 3D filtering, in "Electronic Imaging" 06, Proc. SPIE 6064", (2006). doi: 10.1117/12.643267.

[38]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, Image Processing, IEEE Transactions on, 15 (2006), 3736-3745. doi: 10.1109/TIP.2006.881969.

[39]

P. Coupé, P. Hellier, C. Kervrann and C. Barillot, Bayesian non local means-based speckle filtering, in "Proceedings of ISBI," (2008), 1291-1294. doi: 10.1109/ISBI.2008.4541240.

show all references

References:
[1]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685. doi: 10.1002/cpa.3160420503.

[2]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639. doi: 10.1109/34.56205.

[3]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[4]

M. Bertalmio, V. Caselles, B. Rougé and A. Solé, TV based image restoration with local constraints, Journal of Scientific Computing, 19 (2003), 95-122. doi: 10.1023/A:1025391506181.

[5]

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1984), 721-741.

[6]

P. Saint-Marc, J. S. Chen and G. Medioni, Adaptive smoothing: A general tool for early vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (1991), 514-529.

[7]

S. M. Smith and J. M. Brady, SUSAN - A new approach to low level image processing, International Journal of Computer Vision, 23 (1995), 45-78.

[8]

C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in "Proceedings of Sixth International Conference on Computer Vision," (1998), 839-846. doi: 10.1109/ICCV.1998.710815.

[9]

M. Elad, On the origin of the bilateral filter and ways to improve it, IEEE Transactions on Image Processing, 11 (2002), 1141-1151. doi: 10.1109/TIP.2002.801126.

[10]

S. Durand and J. Froment, Reconstruction of wavelet coefficients using total variation minimization, SIAM J. Sci. Comput., 24 (2003), 1754-1767. doi: 10.1137/S1064827501397792.

[11]

A. Buades, B. Coll and J. M. Morel, A non-local algorithm for image denoising, IEEE Computer Society, 2 (2005), 60-65. doi: 10.1109/CVPR.2005.38.

[12]

S. Kindermann, S. Osher and P. W. Jones, Deblurring and Denoising of Images by Nonlocal Functionals, Multiscale Modelling and Simulation, 4 (2005), 1091-1115. doi: 10.1137/050622249.

[13]

T. Brox and D. Cremers, Iterated nonlocal means for texture restoration, Scale Space and Variational Methods in Computer Vision, (2008), 13-24. doi: 10.1007/978-3-540-72823-8_2.

[14]

C. Kervrann, J. Boulanger and P. Coupé, Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal, Scale Space and Variational Methods in Computer Vision, (2007), 520-532. doi: 10.1007/978-3-540-72823-8_45.

[15]

B. Goossens, Q. Luong, A. Pizurica and W. Philips, An improved non-local denoising algorithm, in "Local and Non-Local Approximation in Image Processing, International Workshop, Proceedings," (2008).

[16]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), 1005-1028. doi: 10.1137/070698592.

[17]

C-A. Deledalle, L. Denis and F. Tupin, Iterative wieghted maximum likelihood denoising with probabilistic patch-based weights, Transactions on Image Processing, 18 (2009), 2661-2672. doi: 10.1109/TIP.2009.2029593.

[18]

D. Peter, V. Govindan and A. Mathew, Nonlocal-means image denoising techonology using robust M-estimator, Journal of Computer Science and Technology, 25 (2010), 623-631.

[19]

N. Wiest-Daesslé, S. Prima, P. Coupé, S. P. Morrissey and C. Barillot, Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: Applications to DT-MRI, in "Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention," (2008), 171-179. doi: 10.1007/978-3-540-85990-1_21.

[20]

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann and C. Barillot, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, Medical Imaging, IEEE Transactions on, 27 (2008), 425-441. doi: 10.1109/TMI.2007.906087.

[21]

C-A. Deledalle, F. Tupin and L. Denis, Poisson NL means: Unsupervised non local means for Poisson noise, in "Proc. of ICIP", Hongkong, (2010). doi: 10.1109/ICIP.2010.5653394.

[22]

S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49. doi: 10.1016/0021-9991(88)90002-2.

[23]

T. F. Chan and L. A. Vese, Active contours without edges, Image Processing, IEEE Transactions on, 10 (2001), 266-277. doi: 10.1109/83.902291.

[24]

L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the mumford and shah model, International Journal of Computer Vision, 50 (2002), 271-293.

[25]

K. Krishnamoorthy, "Handbook of Statistical Distributions with Applications," Chapman and Hall/CRC Press, London/Boca Raton, 2006. doi: 10.1201/9781420011371.

[26]

T. Gasser, L. Sroka and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika, 73 (1986), 625-633. doi: 10.1093/biomet/73.3.625.

[27]

M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing, 14 (2005), 2091-2106. doi: 10.1109/TIP.2005.859376.

[28]

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, Image Processing, IEEE Transactions on, 13 (2004), 600-612. doi: 10.1109/TIP.2003.819861.

[29]

E. Candés and D. Donoho, "Curvelets: A Surprisingly Effective Nonadaptive Representation of Objects with Edges," in "Curves and Surfaces" (eds. L. L. Schumaker et al. ), Vanderbilt University Press, Nashville, TN.

[30]

K. Guo, G. Kutyniok and D. Labate, "Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators," Wavelets and Splines (Athens, GA, 2005), Nashboro Press, Nashville, TN.

[31]

E. A. Nadaraya, On estimating regression, Theory Probab. Appl., 9 (1964), 141-142. doi: 10.1137/1109020.

[32]

F. J. Anscombe, The transformation of Poisson, binomial and negative-binomial data, Biometrika, 35 (1948), 246-254.

[33]

M. D. DeVore, A. D. Lanterman and J. A. O'Sullivan, ATR performance of a rician model for SAR images, in "Automatic Target Recognition X, Proc. SPIE 4050," (2000), 34-45. doi: 10.1117/12.395589.

[34]

J. Sijbers, A. J. Den Dekker, P. Scheunders and D. Van Dyck, Maximum-likelihood estimation of Rician distribution parameters, Medical Imaging, IEEE Transactions on, 17 (1998), 357-361. doi: 10.1109/42.712125.

[35]

T. Loupas, W. N. McDicken and P. L. Allan, An adaptive weighted median filter for speckle suppression in medical ultrasonic images, Circuits and Systems, IEEE Transactions on, 36 (1989), 129-135. doi: 10.1109/31.16577.

[36]

K. Krissian, Speckle-constrained anisotropic diffusion for ultrasound images, in "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition," (2005), 547-552.

[37]

K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising with block-matching and 3D filtering, in "Electronic Imaging" 06, Proc. SPIE 6064", (2006). doi: 10.1117/12.643267.

[38]

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, Image Processing, IEEE Transactions on, 15 (2006), 3736-3745. doi: 10.1109/TIP.2006.881969.

[39]

P. Coupé, P. Hellier, C. Kervrann and C. Barillot, Bayesian non local means-based speckle filtering, in "Proceedings of ISBI," (2008), 1291-1294. doi: 10.1109/ISBI.2008.4541240.

[1]

Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041

[2]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems and Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[3]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[4]

Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems and Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407

[5]

Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028

[6]

Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027

[7]

Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems and Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95

[8]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[9]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[10]

Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055

[11]

Wei Zhu, Xue-Cheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems and Imaging, 2013, 7 (4) : 1409-1432. doi: 10.3934/ipi.2013.7.1409

[12]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[13]

Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4963-4998. doi: 10.3934/dcdsb.2020321

[15]

Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018

[16]

Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems and Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030

[17]

Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems and Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293

[18]

Lu Tan, Ling Li, Senjian An, Zhenkuan Pan. Nonlinear diffusion based image segmentation using two fast algorithms. Mathematical Foundations of Computing, 2019, 2 (2) : 149-168. doi: 10.3934/mfc.2019011

[19]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems and Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[20]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]