May  2013, 7(2): 523-544. doi: 10.3934/ipi.2013.7.523

A three-dimensional inverse gravimetry problem for ice with snow caps

1. 

Wichita State University, 1845 Fairmount, Wichita, KS 67260-0033

2. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China, China

Received  September 2012 Revised  February 2013 Published  May 2013

We propose a model for the gravitational field of a floating iceberg $D$ with snow on its top. The inverse problem of interest in geophysics is to find $D$ and snow thickness $g$ on its known (visible) top from remote measurements of derivatives of the gravitational potential. By modifying the Novikov's orthogonality method we prove uniqueness of recovering $D$ and $g$ for the inverse problem. We design and test two algorithms for finding $D$ and $g$. One is based on a standard regularized minimization of a misfit functional. The second one applies the level set method to our problem. Numerical examples validate the theory and demonstrate effectiveness of the proposed algorithms.
Citation: Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems & Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523
References:
[1]

M. Bertalmio, L.-T. Cheng, S. Osher and G. Sapiro, Variational problems and partial differential equations on implicit surfaces,, J. Comput. Phys., 174 (2001), 759.  doi: 10.1006/jcph.2001.6937.  Google Scholar

[2]

J. Brandman, A level-set method for computing the eigenvalues of elliptic operators defined on compact hypersurfaces,, J. Sci. Comput., 37 (2008), 282.  doi: 10.1007/s10915-008-9210-z.  Google Scholar

[3]

M. Burger, A level set method for inverse problems,, Inverse Problems, 17 (2001), 1327.  doi: 10.1088/0266-5611/17/5/307.  Google Scholar

[4]

M. Burger and S. Osher, A survey on level set methods for inverse problems and optimal design,, European J. Appl. Math., 16 (2005), 263.  doi: 10.1017/S0956792505006182.  Google Scholar

[5]

T. Cecil, S. J. Osher and J. Qian, Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension,, J. Comput. Phys., 213 (2006), 458.  doi: 10.1016/j.jcp.2005.08.020.  Google Scholar

[6]

O. Dorn and D. Lesselier, Level set methods for inverse scattering,, Inverse Problems, 22 (2006).  doi: 10.1088/0266-5611/22/4/R01.  Google Scholar

[7]

A. Elcrat, V. Isakov, E. Kropf and D. Stewart, A stability analysis of the harmonic continuation,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/7/075016.  Google Scholar

[8]

N. Halko, P. G. Martinsson, Y. Shkolnisky and M Tygert, An algorithm for the principal component analysis of large data sets,, SIAM J. Sci. Comput., 33 (2010), 2580.  doi: 10.1137/100804139.  Google Scholar

[9]

S. Hou, K. Solna and H.-K. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[10]

V. Isakov, "Inverse Source Problems,", AMS, (1990).   Google Scholar

[11]

V. Isakov, S. Leung and J. Qian, A fast local level set method for inverse gravimetry,, Commun. Comput. Phys., 10 (2011), 1044.  doi: 10.4208/cicp.100710.021210a.  Google Scholar

[12]

M. Keldysh, On the solubility and stability of the Dirichlet's problem,, Uspekhi Matem. Nauk., 8 (1940), 171.   Google Scholar

[13]

S. Leung, Eulerian approach for computing the finite time Lyapunov exponent,, J. Comput. Phys., 230 (2011), 3500.  doi: 10.1016/j.jcp.2011.01.046.  Google Scholar

[14]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set,, Inverse Problems, 14 (1998), 685.  doi: 10.1088/0266-5611/14/3/018.  Google Scholar

[15]

C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces,, SIAM J. Sci. Comput., 31 (2009), 4330.  doi: 10.1137/080740003.  Google Scholar

[16]

C. Miranda, "Partial Differential Equations of Elliptic Type,", Springer-Verlag, (1970).   Google Scholar

[17]

P. Novikov, Sur le probleme inverse du potential,, Dokl. Akad. Nauk SSSR, 18 (1938), 165.   Google Scholar

[18]

S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[19]

A. I. Prilepko, D. G. Orlovskii and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (2000).   Google Scholar

[20]

J. Qian, L.-T. Cheng and S. J. Osher, A level set based Eulerian approach for anisotropic wave propagations,, Wave Motion, 37 (2003), 365.  doi: 10.1016/S0165-2125(02)00101-4.  Google Scholar

[21]

J. Qian and S. Leung, A level set method for paraxial multivalued traveltimes,, J. Comput. Phys., 197 (2004), 711.  doi: 10.1016/j.jcp.2003.12.017.  Google Scholar

[22]

J. Qian and S. Leung, A local level set method for paraxial multivalued geometric optics,, SIAM J. Sci. Comp., 28 (2006), 206.  doi: 10.1137/030601673.  Google Scholar

[23]

F. Santosa, A level-set approach for inverse problems involving obstacles,, Control, 1 (1996), 17.   Google Scholar

[24]

K. van den Doel, U. Ascher and A. Leitao, Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems,, J. Sci. Comput., 43 (2010), 44.  doi: 10.1007/s10915-009-9341-x.  Google Scholar

[25]

J. Xu and H. K. Zhao, An Eulerian formulation for solving partial differential equations along a moving interface,, J. Sci. Comput., 19 (2003), 573.  doi: 10.1023/A:1025336916176.  Google Scholar

[26]

H.-K. Zhao, T. Chan, B. Merriman and S. J. Osher, A variational level set approach for multiphase motion,, J. Comput. Phys., 127 (1996), 179.  doi: 10.1006/jcph.1996.0167.  Google Scholar

show all references

References:
[1]

M. Bertalmio, L.-T. Cheng, S. Osher and G. Sapiro, Variational problems and partial differential equations on implicit surfaces,, J. Comput. Phys., 174 (2001), 759.  doi: 10.1006/jcph.2001.6937.  Google Scholar

[2]

J. Brandman, A level-set method for computing the eigenvalues of elliptic operators defined on compact hypersurfaces,, J. Sci. Comput., 37 (2008), 282.  doi: 10.1007/s10915-008-9210-z.  Google Scholar

[3]

M. Burger, A level set method for inverse problems,, Inverse Problems, 17 (2001), 1327.  doi: 10.1088/0266-5611/17/5/307.  Google Scholar

[4]

M. Burger and S. Osher, A survey on level set methods for inverse problems and optimal design,, European J. Appl. Math., 16 (2005), 263.  doi: 10.1017/S0956792505006182.  Google Scholar

[5]

T. Cecil, S. J. Osher and J. Qian, Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension,, J. Comput. Phys., 213 (2006), 458.  doi: 10.1016/j.jcp.2005.08.020.  Google Scholar

[6]

O. Dorn and D. Lesselier, Level set methods for inverse scattering,, Inverse Problems, 22 (2006).  doi: 10.1088/0266-5611/22/4/R01.  Google Scholar

[7]

A. Elcrat, V. Isakov, E. Kropf and D. Stewart, A stability analysis of the harmonic continuation,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/7/075016.  Google Scholar

[8]

N. Halko, P. G. Martinsson, Y. Shkolnisky and M Tygert, An algorithm for the principal component analysis of large data sets,, SIAM J. Sci. Comput., 33 (2010), 2580.  doi: 10.1137/100804139.  Google Scholar

[9]

S. Hou, K. Solna and H.-K. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[10]

V. Isakov, "Inverse Source Problems,", AMS, (1990).   Google Scholar

[11]

V. Isakov, S. Leung and J. Qian, A fast local level set method for inverse gravimetry,, Commun. Comput. Phys., 10 (2011), 1044.  doi: 10.4208/cicp.100710.021210a.  Google Scholar

[12]

M. Keldysh, On the solubility and stability of the Dirichlet's problem,, Uspekhi Matem. Nauk., 8 (1940), 171.   Google Scholar

[13]

S. Leung, Eulerian approach for computing the finite time Lyapunov exponent,, J. Comput. Phys., 230 (2011), 3500.  doi: 10.1016/j.jcp.2011.01.046.  Google Scholar

[14]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set,, Inverse Problems, 14 (1998), 685.  doi: 10.1088/0266-5611/14/3/018.  Google Scholar

[15]

C. B. Macdonald and S. J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces,, SIAM J. Sci. Comput., 31 (2009), 4330.  doi: 10.1137/080740003.  Google Scholar

[16]

C. Miranda, "Partial Differential Equations of Elliptic Type,", Springer-Verlag, (1970).   Google Scholar

[17]

P. Novikov, Sur le probleme inverse du potential,, Dokl. Akad. Nauk SSSR, 18 (1938), 165.   Google Scholar

[18]

S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[19]

A. I. Prilepko, D. G. Orlovskii and I. A. Vasin, "Methods for Solving Inverse Problems in Mathematical Physics,", Marcel Dekker, (2000).   Google Scholar

[20]

J. Qian, L.-T. Cheng and S. J. Osher, A level set based Eulerian approach for anisotropic wave propagations,, Wave Motion, 37 (2003), 365.  doi: 10.1016/S0165-2125(02)00101-4.  Google Scholar

[21]

J. Qian and S. Leung, A level set method for paraxial multivalued traveltimes,, J. Comput. Phys., 197 (2004), 711.  doi: 10.1016/j.jcp.2003.12.017.  Google Scholar

[22]

J. Qian and S. Leung, A local level set method for paraxial multivalued geometric optics,, SIAM J. Sci. Comp., 28 (2006), 206.  doi: 10.1137/030601673.  Google Scholar

[23]

F. Santosa, A level-set approach for inverse problems involving obstacles,, Control, 1 (1996), 17.   Google Scholar

[24]

K. van den Doel, U. Ascher and A. Leitao, Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems,, J. Sci. Comput., 43 (2010), 44.  doi: 10.1007/s10915-009-9341-x.  Google Scholar

[25]

J. Xu and H. K. Zhao, An Eulerian formulation for solving partial differential equations along a moving interface,, J. Sci. Comput., 19 (2003), 573.  doi: 10.1023/A:1025336916176.  Google Scholar

[26]

H.-K. Zhao, T. Chan, B. Merriman and S. J. Osher, A variational level set approach for multiphase motion,, J. Comput. Phys., 127 (1996), 179.  doi: 10.1006/jcph.1996.0167.  Google Scholar

[1]

Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems & Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479

[2]

Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431

[3]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[4]

Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020103

[5]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[6]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

[7]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[8]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems & Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[9]

Sandro Zagatti. Minimization of non quasiconvex functionals by integro-extremization method. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 625-641. doi: 10.3934/dcds.2008.21.625

[10]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[11]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[12]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[13]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[14]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[15]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[16]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

[17]

Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems & Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917

[18]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[19]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[20]

Qichun Wang, Chik How Tan, Pantelimon Stănică. Concatenations of the hidden weighted bit function and their cryptographic properties. Advances in Mathematics of Communications, 2014, 8 (2) : 153-165. doi: 10.3934/amc.2014.8.153

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]