Citation: |
[1] |
I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil and N. Harel, Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle, Magnetic Resonance in Medicine, 64 (2010), 554-566.doi: 10.1002/mrm.22365. |
[2] |
K. Arrow, L, Hurwicz, H. Uzawa and H. Chenery, Studies in linear and non-linear programming, Stanford Mathematical Studies in the Social Sciences, II, Stanford University Press, Stanford, Calif., (1958). |
[3] |
H. Assemlal, D. Tschumperlé and L. Brun, Fiber tracking on HARDI data using robust ODF fields, in "IEEE International Conference on Image Processing," Citeseer, (2007), 344-351.doi: 10.1109/ICIP.2007.4379264. |
[4] |
P. Basser, J. Mattiello and D. Lebihan, Estimation of the effective self-diffusion tensor from the NMR spin echo, Journal of Magnetic Resonance, Series B, 103 (1994), 247-247.doi: 10.1006/jmrb.1994.1037. |
[5] |
P. Basser and C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI, Journal of Magnetic Resonance, Series B, 111 (1996), 209-219. |
[6] |
P. Basser, S. Pajevic, C. Pierpaoli, J. Duda and A. Aldroubi, In vivo fiber tractography using DT-MRI data, Magnetic Resonance in Medicine, 44 (2000), 625-632.doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O. |
[7] |
A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.doi: 10.1023/B:JMIV.0000011325.36760.1e. |
[8] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.doi: 10.1007/s10851-010-0251-1. |
[9] |
Y. Chen, W. Guo, Q. Zeng and Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Problems and Imaging, 2 (2008), 205-224.doi: 10.3934/ipi.2008.2.205. |
[10] |
O. Christiansen, T. Lee, J. Lie, U. Sinha and T. Chan, Total variation regularization of matrix-valued images, International Journal of Biomedical Imaging, 2007 (2007).doi: 10.1155/2007/27432. |
[11] |
M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications, Magnetic Resonance in Medicine, 56 (2006), 395-410.doi: 10.1002/mrm.20948. |
[12] |
M. Descoteaux, E. Angelino, S. Fitzgibbons and R. Deriche, Regularized, fast, and robust analytical Q-ball imaging, Magnetic Resonance in Medicine, 58 (2007), 497-510.doi: 10.1002/mrm.21277. |
[13] |
M. Descoteaux, R. Deriche, T. Knösche and A. Anwander, Deterministic and probabilistic tractography based on complex fibre orientation distributions, IEEE transactions on medical imaging, 28 (2009), 269-286.doi: 10.1109/TMI.2008.2004424. |
[14] |
E. Esser, X. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3 (2010), 1015-1046.doi: 10.1137/09076934X. |
[15] |
L. Frank, Anisotropy in high angular resolution diffusion-weighted MRI, Magnetic Resonance in Medicine, 45 (2001), 935-939.doi: 10.1002/mrm.1125. |
[16] |
T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.doi: 10.1137/080725891. |
[17] |
L. He, T.-C. Chang, S. Osher, T. Fang and P. Speier, MR image reconstruction by using the iterative renement method and nonlinear inverse scale space methods, UCLA CAM Reports 06-35, (2006). |
[18] |
D. Jones, A. Simmons, S. Williams and M. Horsfield, Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI, Magnetic Resonance in Medicine, 42 (1999), 37-41.doi: 10.1002/(SICI)1522-2594(199907)42:1<37::AID-MRM7>3.0.CO;2-O. |
[19] |
Q. Li, C. A. Micchelli, L. Shen and Y. Xu, A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012).doi: 10.1088/0266-5611/28/9/095003. |
[20] |
P. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.doi: 10.1137/0716071. |
[21] |
M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195.doi: 10.1002/mrm.21391. |
[22] |
S. Ma, W. Yin, Y. Zhang and A. Chakraborty, An efficient algorithm for compressed MR imaging using total variation and wavelets, in "IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008)," (2008).doi: 10.1109/CVPR.2008.4587391. |
[23] |
A. Ramirez-Manzanares and M. Rivera, Basis tensor decomposition for restoring intra-voxel structure and stochastic walks for inferring brain connectivity in DT-MRI, International Journal of Computer Vision, 69 (2006), 77-92.doi: 10.1007/s11263-006-6855-7. |
[24] |
T. McGraw, B. Vemuri, Y. Chen, M. Rao and T. Mareci, DT-MRI denoising and neuronal fiber tracking, Medical Image Analysis, 8 (2004), 95-111.doi: 10.1016/j.media.2003.12.001. |
[25] |
T. McGraw, B. Vemuri, E. Ozarslan, Y. Chen and T. Mareci, Variational denoising of diffusion weighted MRI, Inverse Problems and Imaging, 3 (2009), 625-648.doi: 10.3934/ipi.2009.3.625. |
[26] |
C. A. Micchelli, L. Shen and Y. Xu, Proximity Algorithms for Image Models: Denoising, Inverse Problems, 27 (2011).doi: 10.1088/0266-5611/27/4/045009. |
[27] |
E. Stejskal and J. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, The Journal of Chemical Physics, 42 (1965), 288.doi: 10.1063/1.1695690. |
[28] |
D. Tschumperlé and R. Deriche, Variational frameworks for DT-MRI estimation, regularization and visualization, in "Ninth IEEE International Conference on Computer Vision," (2003), 116-121.doi: 10.1109/ICCV.2003.1238323. |
[29] |
D. Tuch, R. Weisskoff, J. Belliveau and V. Wedeen, High angular resolution diffusion imaging of the human brain, in "Proceedings of the 7th Annual Meeting of ISMRM," (1999), 321-321. |
[30] |
D. Tuch, T. Reese, M. Wiegell and V. J. Wedeen, Diffusion MRI of complex neural architecture, Neuron, 40 (2003), 885-895.doi: 10.1016/S0896-6273(03)00758-X. |
[31] |
D. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, 52 (2004), 1358-1372.doi: 10.1002/mrm.20279. |
[32] |
A. Tristán-Vega, C. Westin and S. Aja-Fernández, Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging, NeuroImage, 47 (2009), 638-650.doi: 10.1016/j.neuroimage.2009.04.049. |
[33] |
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272.doi: 10.1137/080724265. |
[34] |
V. Wedeen, T. Reese, D. Tuch, M. Weigel, J. Dou, R. Weiskoff and D. Chessler, Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI, in "Proc. Intl. Sot. Mag. Reson. Med.," 8 (2000), 82-82. |
[35] |
V. Wedeen, P. Hagmann, W. Tseng, T. Reese and R. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, Magnetic Resonance in Medicine, 54 (2005), 1377-1386.doi: 10.1002/mrm.20642. |
[36] |
J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 288-297. |
[37] |
M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report 08-34, (2008). |
[38] |
M. Zhu, S. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400.doi: 10.1007/s10589-008-9225-2. |