May  2013, 7(2): 611-647. doi: 10.3934/ipi.2013.7.611

Constructing continuous stationary covariances as limits of the second-order stochastic difference equations

1. 

University of Oulu, Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä

2. 

University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki, Finland

3. 

University of Oulu, Sodankylä Geophysical Observatory, Sodankylä

Received  November 2011 Revised  August 2012 Published  May 2013

In Bayesian statistical inverse problems the a priori probability distributions are often given as stochastic difference equations. We derive a certain class of stochastic partial difference equations by starting from second-order stochastic partial differential equations in one and two dimensions. We discuss discretisation schemes on uniform lattices of these stationary continuous-time stochastic processes and convergence of the discrete-time processes to the continuous-time processes. A special emphasis is given to an analytical calculation of the covariance kernels of the processes. We find a representation for the covariance kernels in a simple parametric form with controllable parameters: correlation length and variance. In the discrete-time processes the discretisation step is also given as a parameter. Therefore, the discrete-time covariances can be considered as discretisation-invariant. In the two-dimensional cases we find rotation-invariant and anisotropic representations of the difference equations and the corresponding continuous-time covariance kernels.
Citation: Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems & Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611
References:
[1]

V. I. Bogachev, "Measure Theory Vol I, II,", Springer-Verlag, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[2]

V. I. Bogachev and A. V. Kolesnikov, Open mappings of probability measures and Skorokhod's representation theorem,, Theory Probab. Appl., 46 (2002), 20.  doi: 10.1137/S0040585X97978701.  Google Scholar

[3]

R. L. Burden, J. D. Faires and A. C. Reynolds, "Numerical Analysis,", Prindle, (1978).   Google Scholar

[4]

M. D. Donsker, An invariance principle for certain probability limit theorems,, Mem. Amer. Math. Soc., 1951 (1951).   Google Scholar

[5]

J. L. Doob, "Stochastic Processes,", John Wiley & Sons, (1953).   Google Scholar

[6]

M. Fukushima, Y. Ōshima and M. Takeda, "Dirichlet Forms and Symmetric Markov Processes,", de Gruyter Studies in Mathematics, (1994).  doi: 10.1515/9783110889741.  Google Scholar

[7]

I. M. Gel'fand and N. Ya. Vilenkin, "Generalized Functions. Vol. 4. Applications Of Harmonic Analysis,", Academic Press, (1964).   Google Scholar

[8]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products,", $7^{th}$ edition, (2007).   Google Scholar

[9]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems,, Inverse Problems and Imaging, 4 (2009), 567.  doi: 10.3934/ipi.2009.3.567.  Google Scholar

[10]

T. Hida, H-H. Kuo, J. Potthoff and L. Streit, "White Noise. An Infinite-Dimensional Calculus,", Kluwer Academic Publishers Group, (1993).   Google Scholar

[11]

K. Itō, On stochastic differential equations,, Mem. Amer. Math. Soc., 1951 (1951).   Google Scholar

[12]

K. Itō, Stochastic integral,, Proc. Imp. Acad. Tokyo, 20 (1944), 519.  doi: 10.3792/pia/1195572786.  Google Scholar

[13]

K. E. Iverson, "A Programming Language,", New York: Wiley, (1962).   Google Scholar

[14]

J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer, (2005).   Google Scholar

[15]

D. Knuth, Two notes on notation,, American Mathematical Monthly, 99 (1992), 403.  doi: 10.2307/2325085.  Google Scholar

[16]

H-H. Kuo, "White Noise Distribution Theory,", CRC Press, (1996).   Google Scholar

[17]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems,", Ph.D thesis, (2002).   Google Scholar

[18]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions,, Inverse Problems and Imaging, 6 (2012), 215.  doi: 10.3934/ipi.2012.6.215.  Google Scholar

[19]

S. Lasanen, Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns,, Inverse Problems and Imaging, 6 (2012), 267.  doi: 10.3934/ipi.2012.6.267.  Google Scholar

[20]

M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors,, Inverse Problems and Imaging, 3 (2009), 87.  doi: 10.3934/ipi.2009.3.87.  Google Scholar

[21]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?,, Inverse Problems, 20 (2004), 1537.  doi: 10.1088/0266-5611/20/5/013.  Google Scholar

[22]

M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalised random variables,, Inverse Problems, 5 (1989), 599.  doi: 10.1088/0266-5611/5/4/011.  Google Scholar

[23]

F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian Markov random fields: The stochastic partial differential equation approach,, Journal of the Royal Statistical Society: Series B, 73 (2011), 423.  doi: 10.1111/j.1467-9868.2011.00777.x.  Google Scholar

[24]

M. Orispää and M. Lehtinen, Fortran linear inverse problem solver,, Inverse Problems and Imaging, 4 (2010), 482.  doi: 10.3934/ipi.2010.4.485.  Google Scholar

[25]

P. Piiroinen, Statistical measurements, experiments and applications,, Ann. Acad. Sci. Fenn. Math. Diss., (2005).   Google Scholar

[26]

L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correlation priors,, Inverse Problems and Imaging, 5 (2011), 167.  doi: 10.3934/ipi.2011.5.167.  Google Scholar

[27]

H. Rue and L. Held, "Gaussian Markov Random Fields: Theory and Applications,", Chapman & Hall/CRC, (2005).  doi: 10.1201/9780203492024.  Google Scholar

[28]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I,, Comm. Pure Appl. Math., 22 (1969), 345.  doi: 10.1002/cpa.3160220304.  Google Scholar

[29]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. II,, Comm. Pure Appl. Math., 22 (1969), 479.  doi: 10.1002/cpa.3160220404.  Google Scholar

[30]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions,, Comm. Pure Appl. Math., 24 (1971), 147.  doi: 10.1002/cpa.3160240206.  Google Scholar

[31]

C. H. Su and D. Lucor, Covariance kernel representations of multidimensional second-order stochastic processes,, J. Comp. Phys., 217 (2006), 82.  doi: 10.1016/j.jcp.2006.02.006.  Google Scholar

show all references

References:
[1]

V. I. Bogachev, "Measure Theory Vol I, II,", Springer-Verlag, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[2]

V. I. Bogachev and A. V. Kolesnikov, Open mappings of probability measures and Skorokhod's representation theorem,, Theory Probab. Appl., 46 (2002), 20.  doi: 10.1137/S0040585X97978701.  Google Scholar

[3]

R. L. Burden, J. D. Faires and A. C. Reynolds, "Numerical Analysis,", Prindle, (1978).   Google Scholar

[4]

M. D. Donsker, An invariance principle for certain probability limit theorems,, Mem. Amer. Math. Soc., 1951 (1951).   Google Scholar

[5]

J. L. Doob, "Stochastic Processes,", John Wiley & Sons, (1953).   Google Scholar

[6]

M. Fukushima, Y. Ōshima and M. Takeda, "Dirichlet Forms and Symmetric Markov Processes,", de Gruyter Studies in Mathematics, (1994).  doi: 10.1515/9783110889741.  Google Scholar

[7]

I. M. Gel'fand and N. Ya. Vilenkin, "Generalized Functions. Vol. 4. Applications Of Harmonic Analysis,", Academic Press, (1964).   Google Scholar

[8]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products,", $7^{th}$ edition, (2007).   Google Scholar

[9]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems,, Inverse Problems and Imaging, 4 (2009), 567.  doi: 10.3934/ipi.2009.3.567.  Google Scholar

[10]

T. Hida, H-H. Kuo, J. Potthoff and L. Streit, "White Noise. An Infinite-Dimensional Calculus,", Kluwer Academic Publishers Group, (1993).   Google Scholar

[11]

K. Itō, On stochastic differential equations,, Mem. Amer. Math. Soc., 1951 (1951).   Google Scholar

[12]

K. Itō, Stochastic integral,, Proc. Imp. Acad. Tokyo, 20 (1944), 519.  doi: 10.3792/pia/1195572786.  Google Scholar

[13]

K. E. Iverson, "A Programming Language,", New York: Wiley, (1962).   Google Scholar

[14]

J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems,", Springer, (2005).   Google Scholar

[15]

D. Knuth, Two notes on notation,, American Mathematical Monthly, 99 (1992), 403.  doi: 10.2307/2325085.  Google Scholar

[16]

H-H. Kuo, "White Noise Distribution Theory,", CRC Press, (1996).   Google Scholar

[17]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems,", Ph.D thesis, (2002).   Google Scholar

[18]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions,, Inverse Problems and Imaging, 6 (2012), 215.  doi: 10.3934/ipi.2012.6.215.  Google Scholar

[19]

S. Lasanen, Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns,, Inverse Problems and Imaging, 6 (2012), 267.  doi: 10.3934/ipi.2012.6.267.  Google Scholar

[20]

M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors,, Inverse Problems and Imaging, 3 (2009), 87.  doi: 10.3934/ipi.2009.3.87.  Google Scholar

[21]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?,, Inverse Problems, 20 (2004), 1537.  doi: 10.1088/0266-5611/20/5/013.  Google Scholar

[22]

M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalised random variables,, Inverse Problems, 5 (1989), 599.  doi: 10.1088/0266-5611/5/4/011.  Google Scholar

[23]

F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian Markov random fields: The stochastic partial differential equation approach,, Journal of the Royal Statistical Society: Series B, 73 (2011), 423.  doi: 10.1111/j.1467-9868.2011.00777.x.  Google Scholar

[24]

M. Orispää and M. Lehtinen, Fortran linear inverse problem solver,, Inverse Problems and Imaging, 4 (2010), 482.  doi: 10.3934/ipi.2010.4.485.  Google Scholar

[25]

P. Piiroinen, Statistical measurements, experiments and applications,, Ann. Acad. Sci. Fenn. Math. Diss., (2005).   Google Scholar

[26]

L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correlation priors,, Inverse Problems and Imaging, 5 (2011), 167.  doi: 10.3934/ipi.2011.5.167.  Google Scholar

[27]

H. Rue and L. Held, "Gaussian Markov Random Fields: Theory and Applications,", Chapman & Hall/CRC, (2005).  doi: 10.1201/9780203492024.  Google Scholar

[28]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I,, Comm. Pure Appl. Math., 22 (1969), 345.  doi: 10.1002/cpa.3160220304.  Google Scholar

[29]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. II,, Comm. Pure Appl. Math., 22 (1969), 479.  doi: 10.1002/cpa.3160220404.  Google Scholar

[30]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions,, Comm. Pure Appl. Math., 24 (1971), 147.  doi: 10.1002/cpa.3160240206.  Google Scholar

[31]

C. H. Su and D. Lucor, Covariance kernel representations of multidimensional second-order stochastic processes,, J. Comp. Phys., 217 (2006), 82.  doi: 10.1016/j.jcp.2006.02.006.  Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[3]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[4]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[8]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[9]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021001

[10]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[11]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[12]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[13]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[14]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[15]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[16]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[19]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (6)

[Back to Top]