May  2013, 7(2): 611-647. doi: 10.3934/ipi.2013.7.611

Constructing continuous stationary covariances as limits of the second-order stochastic difference equations

1. 

University of Oulu, Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä

2. 

University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki, Finland

3. 

University of Oulu, Sodankylä Geophysical Observatory, Sodankylä

Received  November 2011 Revised  August 2012 Published  May 2013

In Bayesian statistical inverse problems the a priori probability distributions are often given as stochastic difference equations. We derive a certain class of stochastic partial difference equations by starting from second-order stochastic partial differential equations in one and two dimensions. We discuss discretisation schemes on uniform lattices of these stationary continuous-time stochastic processes and convergence of the discrete-time processes to the continuous-time processes. A special emphasis is given to an analytical calculation of the covariance kernels of the processes. We find a representation for the covariance kernels in a simple parametric form with controllable parameters: correlation length and variance. In the discrete-time processes the discretisation step is also given as a parameter. Therefore, the discrete-time covariances can be considered as discretisation-invariant. In the two-dimensional cases we find rotation-invariant and anisotropic representations of the difference equations and the corresponding continuous-time covariance kernels.
Citation: Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems and Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611
References:
[1]

V. I. Bogachev, "Measure Theory Vol I, II," Springer-Verlag, Berlin, 2007 doi: 10.1007/978-3-540-34514-5.

[2]

V. I. Bogachev and A. V. Kolesnikov, Open mappings of probability measures and Skorokhod's representation theorem, Theory Probab. Appl., 46 (2002), 20-38. doi: 10.1137/S0040585X97978701.

[3]

R. L. Burden, J. D. Faires and A. C. Reynolds, "Numerical Analysis," Prindle, Weber & Schmidt, 1978.

[4]

M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc., 1951 (1951), 12 pp.

[5]

J. L. Doob, "Stochastic Processes," John Wiley & Sons, New York, 1953.

[6]

M. Fukushima, Y. Ōshima and M. Takeda, "Dirichlet Forms and Symmetric Markov Processes," de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110889741.

[7]

I. M. Gel'fand and N. Ya. Vilenkin, "Generalized Functions. Vol. 4. Applications Of Harmonic Analysis," Academic Press, New York-London, 1964.

[8]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products," $7^{th}$ edition, Academic Press, 2007.

[9]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems, Inverse Problems and Imaging, 4 (2009), 567-597. doi: 10.3934/ipi.2009.3.567.

[10]

T. Hida, H-H. Kuo, J. Potthoff and L. Streit, "White Noise. An Infinite-Dimensional Calculus," Kluwer Academic Publishers Group, Dordrecht, 1993.

[11]

K. Itō, On stochastic differential equations, Mem. Amer. Math. Soc., 1951 (1951), 51 pp.

[12]

K. Itō, Stochastic integral, Proc. Imp. Acad. Tokyo, 20 (1944), 519-524. doi: 10.3792/pia/1195572786.

[13]

K. E. Iverson, "A Programming Language," New York: Wiley, p. 11, 1962.

[14]

J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, 2005.

[15]

D. Knuth, Two notes on notation, American Mathematical Monthly, 99 (1992), 403-422. doi: 10.2307/2325085.

[16]

H-H. Kuo, "White Noise Distribution Theory," CRC Press, Boca Raton, FL, 1996.

[17]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems," Ph.D thesis, University of Oulu, 2002.

[18]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions, Inverse Problems and Imaging, 6 (2012), 215-266. doi: 10.3934/ipi.2012.6.215.

[19]

S. Lasanen, Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns, Inverse Problems and Imaging, 6 (2012), 267-287. doi: 10.3934/ipi.2012.6.267.

[20]

M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging, 3 (2009), 87-122. doi: 10.3934/ipi.2009.3.87.

[21]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563. doi: 10.1088/0266-5611/20/5/013.

[22]

M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalised random variables, Inverse Problems, 5 (1989), 599-612. doi: 10.1088/0266-5611/5/4/011.

[23]

F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B, 73 (2011), 423-498. doi: 10.1111/j.1467-9868.2011.00777.x.

[24]

M. Orispää and M. Lehtinen, Fortran linear inverse problem solver, Inverse Problems and Imaging, 4 (2010), 482-503. doi: 10.3934/ipi.2010.4.485.

[25]

P. Piiroinen, Statistical measurements, experiments and applications, Ann. Acad. Sci. Fenn. Math. Diss., (2005), 89 pp.

[26]

L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correlation priors, Inverse Problems and Imaging, 5 (2011), 167-184. doi: 10.3934/ipi.2011.5.167.

[27]

H. Rue and L. Held, "Gaussian Markov Random Fields: Theory and Applications," Chapman & Hall/CRC, 2005. doi: 10.1201/9780203492024.

[28]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math., 22 (1969), 345-400. doi: 10.1002/cpa.3160220304.

[29]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. II, Comm. Pure Appl. Math., 22 (1969), 479-530. doi: 10.1002/cpa.3160220404.

[30]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math., 24 (1971), 147-225. doi: 10.1002/cpa.3160240206.

[31]

C. H. Su and D. Lucor, Covariance kernel representations of multidimensional second-order stochastic processes, J. Comp. Phys., 217 (2006), 82-99. doi: 10.1016/j.jcp.2006.02.006.

show all references

References:
[1]

V. I. Bogachev, "Measure Theory Vol I, II," Springer-Verlag, Berlin, 2007 doi: 10.1007/978-3-540-34514-5.

[2]

V. I. Bogachev and A. V. Kolesnikov, Open mappings of probability measures and Skorokhod's representation theorem, Theory Probab. Appl., 46 (2002), 20-38. doi: 10.1137/S0040585X97978701.

[3]

R. L. Burden, J. D. Faires and A. C. Reynolds, "Numerical Analysis," Prindle, Weber & Schmidt, 1978.

[4]

M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc., 1951 (1951), 12 pp.

[5]

J. L. Doob, "Stochastic Processes," John Wiley & Sons, New York, 1953.

[6]

M. Fukushima, Y. Ōshima and M. Takeda, "Dirichlet Forms and Symmetric Markov Processes," de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110889741.

[7]

I. M. Gel'fand and N. Ya. Vilenkin, "Generalized Functions. Vol. 4. Applications Of Harmonic Analysis," Academic Press, New York-London, 1964.

[8]

I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series and Products," $7^{th}$ edition, Academic Press, 2007.

[9]

T. Helin, On infinite-dimensional hierarchical probability models in statistical inverse problems, Inverse Problems and Imaging, 4 (2009), 567-597. doi: 10.3934/ipi.2009.3.567.

[10]

T. Hida, H-H. Kuo, J. Potthoff and L. Streit, "White Noise. An Infinite-Dimensional Calculus," Kluwer Academic Publishers Group, Dordrecht, 1993.

[11]

K. Itō, On stochastic differential equations, Mem. Amer. Math. Soc., 1951 (1951), 51 pp.

[12]

K. Itō, Stochastic integral, Proc. Imp. Acad. Tokyo, 20 (1944), 519-524. doi: 10.3792/pia/1195572786.

[13]

K. E. Iverson, "A Programming Language," New York: Wiley, p. 11, 1962.

[14]

J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, 2005.

[15]

D. Knuth, Two notes on notation, American Mathematical Monthly, 99 (1992), 403-422. doi: 10.2307/2325085.

[16]

H-H. Kuo, "White Noise Distribution Theory," CRC Press, Boca Raton, FL, 1996.

[17]

S. Lasanen, "Discretizations of Generalized Random Variables with Applications to Inverse Problems," Ph.D thesis, University of Oulu, 2002.

[18]

S. Lasanen, Non-Gaussian statistical inverse problems. Part I: Posterior distributions, Inverse Problems and Imaging, 6 (2012), 215-266. doi: 10.3934/ipi.2012.6.215.

[19]

S. Lasanen, Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns, Inverse Problems and Imaging, 6 (2012), 267-287. doi: 10.3934/ipi.2012.6.267.

[20]

M. Lassas, E. Saksman and S. Siltanen, Discretization invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging, 3 (2009), 87-122. doi: 10.3934/ipi.2009.3.87.

[21]

M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563. doi: 10.1088/0266-5611/20/5/013.

[22]

M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalised random variables, Inverse Problems, 5 (1989), 599-612. doi: 10.1088/0266-5611/5/4/011.

[23]

F. Lindgren, H. Rue and J. Lindström, An explicit link between Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B, 73 (2011), 423-498. doi: 10.1111/j.1467-9868.2011.00777.x.

[24]

M. Orispää and M. Lehtinen, Fortran linear inverse problem solver, Inverse Problems and Imaging, 4 (2010), 482-503. doi: 10.3934/ipi.2010.4.485.

[25]

P. Piiroinen, Statistical measurements, experiments and applications, Ann. Acad. Sci. Fenn. Math. Diss., (2005), 89 pp.

[26]

L. Roininen, M. Lehtinen, S. Lasanen, M. Orispää and M. Markkanen, Correlation priors, Inverse Problems and Imaging, 5 (2011), 167-184. doi: 10.3934/ipi.2011.5.167.

[27]

H. Rue and L. Held, "Gaussian Markov Random Fields: Theory and Applications," Chapman & Hall/CRC, 2005. doi: 10.1201/9780203492024.

[28]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, Comm. Pure Appl. Math., 22 (1969), 345-400. doi: 10.1002/cpa.3160220304.

[29]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. II, Comm. Pure Appl. Math., 22 (1969), 479-530. doi: 10.1002/cpa.3160220404.

[30]

D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math., 24 (1971), 147-225. doi: 10.1002/cpa.3160240206.

[31]

C. H. Su and D. Lucor, Covariance kernel representations of multidimensional second-order stochastic processes, J. Comp. Phys., 217 (2006), 82-99. doi: 10.1016/j.jcp.2006.02.006.

[1]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[2]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[3]

Leonid Shaikhet. Behavior of solution of stochastic difference equation with continuous time under additive fading noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 301-310. doi: 10.3934/dcdsb.2021043

[4]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[5]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[6]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[7]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

[8]

Jialin Hong, Lijun Miao, Liying Zhang. Convergence analysis of a symplectic semi-discretization for stochastic nls equation with quadratic potential. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4295-4315. doi: 10.3934/dcdsb.2019120

[9]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[10]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic and Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[11]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic and Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[12]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[13]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[14]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[15]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[16]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[17]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure and Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[18]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial and Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[19]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control and Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[20]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (6)

[Back to Top]