Advanced Search
Article Contents
Article Contents

An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number

Abstract Related Papers Cited by
  • The anisotropic perfectly matched layer (PML) defines a continuous vector field outside a rectangle domain and performs the complex coordinate stretching along the direction of the vector field. In this paper we propose a new way of constructing the vector field which allows us to prove the exponential decay of the stretched Green function without the constraint on the thickness of the PML layer. We report numerical experiments to illustrate the competitive behavior of the proposed PML method.
    Mathematics Subject Classification: Primary: 65N30; Secondary: 78A45, 35Q60.


    \begin{equation} \\ \end{equation}
  • [1]

    J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185-200.doi: 10.1006/jcph.1994.1159.


    J. H. Bramble and J. E. PasciakAnalysis of a cartesian PML approximation to acoustic scattering problems in $\mathbbR^2$ and $\mathbbR^3$, J. Appl. Comput. Math., to appear.


    Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Nummer. Anal., 41 (2003), 799-826.doi: 10.1137/S0036142902400901.


    Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), 645-671.


    Z. Chen and X. M. Wu, An adaptive uniaxial perfectly matched layer technique for time-Harmonic scattering problems, Numer. Math. Theory Methods Appl., 1 (2008), 113-137.


    J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems, Math. Comp., 77 (2008), 673-698.doi: 10.1090/S0025-5718-07-02055-8.


    Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media, SIAM J. Numer. Anal., 48 (2010), 2158-2185.doi: 10.1137/090750603.


    Z. Chen, T. Cui and L. ZhangAn adaptive anisotropic perfectly matched layer method for 3D time harmonic electromagnetic scattering problems, Numer. Math., to appear.


    W. C. Chew, "Waves and Fields in Inhomogeneous Media," Springer, New York, 1990.doi: 10.1109/9780470547052.


    W. C. Chew and W. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt. Tech. Lett., 7 (1994), 599-604.doi: 10.1002/mop.4650071304.


    F. Collino and P. B. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.doi: 10.1137/S1064827596301406.


    T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method, SIAM J. Math. Anal., 35 (2003), 547-560 (electronic).doi: 10.1137/S0036141002406485.


    S. Kim and J. E. Pasciak, Analysis of a cartisian PML approximation to acoustic scattering problems in $\mathbbR^2$, J. Math. Anal. Appl., 370 (2010), 168-186.doi: 10.1016/j.jmaa.2010.05.006.


    M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing, 60 (1998), 229-241.doi: 10.1007/BF02684334.


    M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1183-1207.doi: 10.1017/S0308210500001335.


    K. C. Meza-Fajardo and A. S. Papageorgiou, A nonconventional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis, Bulletin Seismological Soc. Am., 98 (2008), 1811-1836.


    A. F. Oskooi, L. Zhang, Y. Avniel and S. G. Johnson, The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers, Optical Express, 16 (2008), 11376-11392.doi: 10.1364/OE.16.011376.


    F. L. Teixeira and W. C. Chew, Advances in the theory of perfectly matched layers, In: "Fast and Efficient Algorithms in Computational Electromagnetics" (eds W.C. Chew et al), Artech House, (2001), 283-346.


    D. V. Trenev, "Spatial Scaling for the Numerical Approximation of Problems on Unbounded Domains," Thesis (Ph.D.), Texas A & M University, 2009, 112 pp.


    E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Absorbing boundary conditions, Appl. Numer. Math., 27 (1998), 533-557.doi: 10.1016/S0168-9274(98)00026-9.


    L. Zschiedrich, R. Klose, A. Schödle and F. Schmidt, A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions, J. Comput. Appl. Math., 188 (2006), 12-32.doi: 10.1016/j.cam.2005.03.047.

  • 加载中

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint