August  2013, 7(3): 663-678. doi: 10.3934/ipi.2013.7.663

An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number

1. 

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, China, China

Received  September 2012 Revised  February 2013 Published  September 2013

The anisotropic perfectly matched layer (PML) defines a continuous vector field outside a rectangle domain and performs the complex coordinate stretching along the direction of the vector field. In this paper we propose a new way of constructing the vector field which allows us to prove the exponential decay of the stretched Green function without the constraint on the thickness of the PML layer. We report numerical experiments to illustrate the competitive behavior of the proposed PML method.
Citation: Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663
References:
[1]

J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves,, J. Comput. Phys., 114 (1994), 185.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[2]

J. H. Bramble and J. E. Pasciak, Analysis of a cartesian PML approximation to acoustic scattering problems in $\mathbbR^2$ and $\mathbbR^3$,, J. Appl. Comput. Math., ().   Google Scholar

[3]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures,, SIAM J. Nummer. Anal., 41 (2003), 799.  doi: 10.1137/S0036142902400901.  Google Scholar

[4]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems,, SIAM J. Numer. Anal., 43 (2005), 645.   Google Scholar

[5]

Z. Chen and X. M. Wu, An adaptive uniaxial perfectly matched layer technique for time-Harmonic scattering problems,, Numer. Math. Theory Methods Appl., 1 (2008), 113.   Google Scholar

[6]

J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems,, Math. Comp., 77 (2008), 673.  doi: 10.1090/S0025-5718-07-02055-8.  Google Scholar

[7]

Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media,, SIAM J. Numer. Anal., 48 (2010), 2158.  doi: 10.1137/090750603.  Google Scholar

[8]

Z. Chen, T. Cui and L. Zhang, An adaptive anisotropic perfectly matched layer method for 3D time harmonic electromagnetic scattering problems,, Numer. Math., ().   Google Scholar

[9]

W. C. Chew, "Waves and Fields in Inhomogeneous Media,", Springer, (1990).  doi: 10.1109/9780470547052.  Google Scholar

[10]

W. C. Chew and W. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,, Microwave Opt. Tech. Lett., 7 (1994), 599.  doi: 10.1002/mop.4650071304.  Google Scholar

[11]

F. Collino and P. B. Monk, The perfectly matched layer in curvilinear coordinates,, SIAM J. Sci. Comput., 19 (1998), 2061.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method,, SIAM J. Math. Anal., 35 (2003), 547.  doi: 10.1137/S0036141002406485.  Google Scholar

[13]

S. Kim and J. E. Pasciak, Analysis of a cartisian PML approximation to acoustic scattering problems in $\mathbbR^2$,, J. Math. Anal. Appl., 370 (2010), 168.  doi: 10.1016/j.jmaa.2010.05.006.  Google Scholar

[14]

M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations,, Computing, 60 (1998), 229.  doi: 10.1007/BF02684334.  Google Scholar

[15]

M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1183.  doi: 10.1017/S0308210500001335.  Google Scholar

[16]

K. C. Meza-Fajardo and A. S. Papageorgiou, A nonconventional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis,, Bulletin Seismological Soc. Am., 98 (2008), 1811.   Google Scholar

[17]

A. F. Oskooi, L. Zhang, Y. Avniel and S. G. Johnson, The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,, Optical Express, 16 (2008), 11376.  doi: 10.1364/OE.16.011376.  Google Scholar

[18]

F. L. Teixeira and W. C. Chew, Advances in the theory of perfectly matched layers,, In:, (2001), 283.   Google Scholar

[19]

D. V. Trenev, "Spatial Scaling for the Numerical Approximation of Problems on Unbounded Domains,", Thesis (Ph.D.), (2009).   Google Scholar

[20]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations,, Absorbing boundary conditions, 27 (1998), 533.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[21]

L. Zschiedrich, R. Klose, A. Schödle and F. Schmidt, A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions,, J. Comput. Appl. Math., 188 (2006), 12.  doi: 10.1016/j.cam.2005.03.047.  Google Scholar

show all references

References:
[1]

J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves,, J. Comput. Phys., 114 (1994), 185.  doi: 10.1006/jcph.1994.1159.  Google Scholar

[2]

J. H. Bramble and J. E. Pasciak, Analysis of a cartesian PML approximation to acoustic scattering problems in $\mathbbR^2$ and $\mathbbR^3$,, J. Appl. Comput. Math., ().   Google Scholar

[3]

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures,, SIAM J. Nummer. Anal., 41 (2003), 799.  doi: 10.1137/S0036142902400901.  Google Scholar

[4]

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems,, SIAM J. Numer. Anal., 43 (2005), 645.   Google Scholar

[5]

Z. Chen and X. M. Wu, An adaptive uniaxial perfectly matched layer technique for time-Harmonic scattering problems,, Numer. Math. Theory Methods Appl., 1 (2008), 113.   Google Scholar

[6]

J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems,, Math. Comp., 77 (2008), 673.  doi: 10.1090/S0025-5718-07-02055-8.  Google Scholar

[7]

Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media,, SIAM J. Numer. Anal., 48 (2010), 2158.  doi: 10.1137/090750603.  Google Scholar

[8]

Z. Chen, T. Cui and L. Zhang, An adaptive anisotropic perfectly matched layer method for 3D time harmonic electromagnetic scattering problems,, Numer. Math., ().   Google Scholar

[9]

W. C. Chew, "Waves and Fields in Inhomogeneous Media,", Springer, (1990).  doi: 10.1109/9780470547052.  Google Scholar

[10]

W. C. Chew and W. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,, Microwave Opt. Tech. Lett., 7 (1994), 599.  doi: 10.1002/mop.4650071304.  Google Scholar

[11]

F. Collino and P. B. Monk, The perfectly matched layer in curvilinear coordinates,, SIAM J. Sci. Comput., 19 (1998), 2061.  doi: 10.1137/S1064827596301406.  Google Scholar

[12]

T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method,, SIAM J. Math. Anal., 35 (2003), 547.  doi: 10.1137/S0036141002406485.  Google Scholar

[13]

S. Kim and J. E. Pasciak, Analysis of a cartisian PML approximation to acoustic scattering problems in $\mathbbR^2$,, J. Math. Anal. Appl., 370 (2010), 168.  doi: 10.1016/j.jmaa.2010.05.006.  Google Scholar

[14]

M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations,, Computing, 60 (1998), 229.  doi: 10.1007/BF02684334.  Google Scholar

[15]

M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1183.  doi: 10.1017/S0308210500001335.  Google Scholar

[16]

K. C. Meza-Fajardo and A. S. Papageorgiou, A nonconventional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis,, Bulletin Seismological Soc. Am., 98 (2008), 1811.   Google Scholar

[17]

A. F. Oskooi, L. Zhang, Y. Avniel and S. G. Johnson, The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,, Optical Express, 16 (2008), 11376.  doi: 10.1364/OE.16.011376.  Google Scholar

[18]

F. L. Teixeira and W. C. Chew, Advances in the theory of perfectly matched layers,, In:, (2001), 283.   Google Scholar

[19]

D. V. Trenev, "Spatial Scaling for the Numerical Approximation of Problems on Unbounded Domains,", Thesis (Ph.D.), (2009).   Google Scholar

[20]

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations,, Absorbing boundary conditions, 27 (1998), 533.  doi: 10.1016/S0168-9274(98)00026-9.  Google Scholar

[21]

L. Zschiedrich, R. Klose, A. Schödle and F. Schmidt, A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions,, J. Comput. Appl. Math., 188 (2006), 12.  doi: 10.1016/j.cam.2005.03.047.  Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[3]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[7]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[8]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[9]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[11]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]