\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation

Abstract Related Papers Cited by
  • In this paper, we will investigate the first- and second-order implicit-explicit schemes with parameters for solving the Allen-Cahn equation. It is known that the Allen-Cahn equation satisfies a nonlinear stability property, i.e., the free-energy functional decreases in time. The goal of this paper is to consider implicit-explicit schemes that inherit the nonlinear stability of the continuous model, which will be achieved by properly choosing parameters associated with the implicit-explicit schemes. Theoretical justifications for the nonlinear stability of the schemes will be provided, and the theoretical results will be verified by several numerical examples.
    Mathematics Subject Classification: 65M06, 65M12, 6506, 35k20, 35Q56.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall, 27 (1979), 1085-1095.doi: 10.1016/0001-6160(79)90196-2.

    [2]

    U. M. Ascher, J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta method for time dependent partial differential equations, Special issue on time integration (Amsterdam, 1996), Appl. Numer. Math., 25 (1997), 151-167.doi: 10.1016/S0168-9274(97)00056-1.

    [3]

    U. M. Ascher, J. Ruuth and T. R. Wetton, Implicit-explicit method for time dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.doi: 10.1137/0732037.

    [4]

    A. L. Bertozzi, N. Ju and H.-W. Lu, A biharmonic modified forward time stepping method for fourth order nonlinear diffusion equations, Discrete Contin. Dyn. Syst. A, 29 (2011), 1367-1391.

    [5]

    A. L. Bertozzi, S. Esedoglu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for image inpainting, Multiscale Model. Simul., 6 (2007), 913-936.doi: 10.1137/060660631.

    [6]

    A. L. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of binary images using the Cahn-Hilliard equation, IEEE Trans. Image Proc., 16 (2007), 285-291.doi: 10.1109/TIP.2006.887728.

    [7]

    S. Boscarino, L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35 (2013), A22-A51.doi: 10.1137/110842855.

    [8]

    F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 13 (2013), 1189-1208.

    [9]

    C. Collins, J. Shen and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Commun. Comput. Phys., 13 (2013), 929-957.

    [10]

    Charles M. Elliott and Bjorn Stinner, Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements, Commun. Comput. Phys., 13 (2013), 325-360.

    [11]

    D. J. EyreAn unconditionally stable one-step scheme for gradient systems, unpublished article, 1998. http://www.math.utah.edu/eyre/research/methods/stable.ps

    [12]

    X. Feng, T. Tang and J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59-80.doi: 10.4208/eajam.200113.220213a.

    [13]

    L. Golubovic, A. Levandovsky and D. Moldovan, Interface dynamics and far-from-equilibrium phase transitions in multilayer epitaxial growth and erosion on crystal surfaces: Continuum theory insights, East Asian J. Appl. Math., 1 (2011), 297-371.doi: 10.4208/eajam.040411.030611a.

    [14]

    F. de la Hoz and F. Vadillo, A Sylvester-based IMEX method via differentiation matrices for solving nonlinear parabolic equations, Commun. Comput. Phys., 14 (2013), 1001-1026.

    [15]

    Y. He, Y. Liu and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), 616-628.doi: 10.1016/j.apnum.2006.07.026.

    [16]

    Samet Y. Kadioglu and Dana A. Knoll, A Jacobian-free Newton Krylov implicit-explicit time integration method for incompressible flow problems, Commun. Comput. Phys., 13 (2013), 1408-1431.

    [17]

    A. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26 (2005), 1214-1233.doi: 10.1137/S1064827502410633.

    [18]

    Junseok Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12 (2012), 613-661.doi: 10.4208/cicp.301110.040811a.

    [19]

    M. Li, T. Tang and B. Fornberg, A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 20(1995), 1137-1151.doi: 10.1002/fld.1650201003.

    [20]

    M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady viscous incompressible flows, J. Sci. Comp., 16(2001), 29-45.doi: 10.1023/A:1011146429794.

    [21]

    B. Li and J.-G. Liu, Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), 713-743.doi: 10.1017/S095679250300528X.

    [22]

    Z. Qiao, Z. Sun and Z. Zhang, The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model, Numer. Meth. Part Differ. Equ., 28 (2012), 1893-1915.doi: 10.1002/num.20707.

    [23]

    Z. Qiao, Z. Zhang and T. Tang, An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), 1395-1414.doi: 10.1137/100812781.

    [24]

    J. Shen, T. Tang and L. Wang, "Spectral Methods: Algorithms, Analysis and Applications," 41 Springer, Heidelberg, 2011, xvi+470 pp.doi: 10.1007/978-3-540-71041-7.

    [25]

    J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst. A, 28 (2010), 1669-1691.doi: 10.3934/dcds.2010.28.1669.

    [26]

    C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), 1759-1779.doi: 10.1137/050628143.

    [27]

    X. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 1057-1070.doi: 10.3934/dcdsb.2009.11.1057.

    [28]

    J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit, SIAM J. Sci. Comput., 31 (2009), 3042-3063.doi: 10.1137/080738398.

    [29]

    Z. Zhang and Z. Qiao, An adaptive time-stepping strategy for the Cahn-Hilliard equation, Commun. Comput. Phys., 11 (2012), 1261-1278.doi: 10.4208/cicp.300810.140411s.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(573) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return