Citation: |
[1] |
J. A. Adam, The dynamics of growth-factor-modified immune response to cancer growth: One dimensional models, Mathl. Comput. Modelling, 17 (1993), 83-106.doi: 10.1016/0895-7177(93)90041-V. |
[2] |
S. Albeverrio, B. Rüdiger and J. L. Wu, Invariant measures and symmetry property of lévy type operators, Potential Analysis, 13 (2000), 147-168.doi: 10.1023/A:1008705820024. |
[3] |
D. Applebaum, "Lévy Processes and Stochastic Calculus," Cambridge Studies in Advanced Mathematics, 93. Cambridge University Press, Cambridge, 2004.doi: 10.1017/CBO9780511755323. |
[4] |
F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra and G. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies, Phys. Rev. Lett., 88 (2002), 097901, 4pp.doi: 10.1103/PhysRevLett.88.097901. |
[5] |
T. Bose and S. Trimper, Stochastic model for tumor growth with immunization, Phys. Rev. E, 79 (2009), 051903, 10 pp.doi: 10.1103/PhysRevE.79.051903. |
[6] |
J. R. Brannan, J. Duan and V. J. Ervin, Escape probability, mean residence time and geophysical fluid particle dynamics, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998), Physica D, 133 (1999), 23-33.doi: 10.1016/S0167-2789(99)00096-2. |
[7] |
H. Chen, J. Duan, X. Li and C. Zhang, A computational analysis for mean exit time under non-Gaussian lévy noises, Applied Mathematics and Computation, 218 (2011), 1845-1856.doi: 10.1016/j.amc.2011.06.068. |
[8] |
Z. Chen, P. Kim and R. Song, Heat kernel estimates for Dirichlet fractional laplacian, J. European Math. Soc., 12 (2010), 1307-1329.doi: 10.4171/JEMS/231. |
[9] |
L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations, J. Theoret. Biol., 238 (2006), 841-862.doi: 10.1016/j.jtbi.2005.06.037. |
[10] |
J. R. R. Duarte, M. V. D. Vermelho and M. L. Lyra, Stochastic resonance of a periodically driven neuron under non-Gaussian noise, Physica A, 387 (2008), 1446-1454.doi: 10.1016/j.physa.2007.11.011. |
[11] |
A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo and E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment, Eur. Phys. J. B, 65 (2008), 435-442.doi: 10.1140/epjb/e2008-00246-2. |
[12] |
A. Fiasconaro and B. Spagnolo, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response, Phys. Rev. E, 74 (2006), 041904, 10pp.doi: 10.1103/PhysRevE.74.041904. |
[13] |
T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by lévy noise, preprint, arXiv:1201.6015. |
[14] |
R. P. Garay and R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions, J. Theor. Biol., 73 (1978), 417-438.doi: 10.1016/0022-5193(78)90150-9. |
[15] |
W. Horsthemke and R. Lefever, "Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology," Springer Series in Synergetics, 15. Springer-Verlag, Berlin, 1984, xv+318 pp. |
[16] |
N. E. Humphries et al., Environmental context explains lévy and brownian movement patterns of marine predators, Nature, 465 (2010), 1066-1069.doi: 10.1038/nature09116. |
[17] |
L. Jiang, X. Luo, D. Wu and S. Zhu, Stochastic properties of tumor growth driven by white lévy noise, Modern Physics Letters B, 26 (2012), 1250149, 9pp.doi: 10.1142/S0217984912501497. |
[18] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252.doi: 10.1007/s002850050127. |
[19] |
A. E. Kyprianou, "Introductory Lectures on Fluctuations of Lévy Processes with Applications," Springer-Verlag, Berlin, 2006, xiv+373 pp. |
[20] |
R. Lefever and W. Horsthemk, Bistability in fluctuating environments. Implications in tumor immumology, Bulletin of Mathematical Biology, 41 (1979), 469-490.doi: 10.1007/BF02458325. |
[21] |
D. Li, W. Xu, Y. Guo and Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment, Physics Letters A, 375 (2011), 886-890.doi: 10.1016/j.physleta.2010.12.066. |
[22] |
M. Liao, The dirichlet problem of a discontinuous markov process, A Chinese summary appears in Acta Math., Sinica 33 (1989), 286pp. Acta Math. Sinica (New Series), 5 (1989), 9-15.doi: 10.1007/BF02107618. |
[23] |
T. Naeh, M. M. Klosek, B. J. Matkowsky and Z. Schuss, A direct approach to the exit problem, SIAM J. Appl. Math., 50 (1990), 595-627.doi: 10.1137/0150036. |
[24] |
A. Ochab-Marcinek and E. Gudowska-Nowak, Population growth and control in stochastic models of cancer development, Physica A, 343 (2004), 557-572.doi: 10.1016/j.physa.2004.06.071. |
[25] |
I. Prigogine and R. Lefever, Stability problems in cancer growth and nucleation, Comp. Biochem. Physiol, 67 (1980), 389-393.doi: 10.1016/0305-0491(80)90326-0. |
[26] |
H. Qiao, X. Kan and J. Duan, Escape probability for stochastic dynamical systems with jumps, Malliavin Calculus and Stochastic Analysis, 34 (2013), 195-216.doi: 10.1007/978-1-4614-5906-4_9. |
[27] |
K.-I. Sato, "Lévy Processes and Infinitely Divisible Distributions," Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999, xii+486 pp. |
[28] |
D. Schertzer, M. Larchevêque, J. Duan, V. V. Yanovsky and S. Lovejoy, Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian lévy stable noises, J. Math. Phys., 42 (2001), 200-212.doi: 10.1063/1.1318734. |
[29] |
Z. Schuss, "Theory and Applications of Stochastic Differential Equations," Wiley Series in Probability and Statistics, John Wiley $&$ Sons, Inc., New York, 1980. |
[30] |
C. Zeng, X. Zhou and S. Tao, Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises, J. Phys. A, 42 (2009), 495002, 8 pp.doi: 10.1088/1751-8113/42/49/495002. |
[31] |
C. Zeng and H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response, J. Stat. Phys., 141 (2010), 889-908.doi: 10.1007/s10955-010-0068-8. |
[32] |
C. Zeng, Effects of correlated noise in a tumor cell growth model in the presence of immune response, Phys. Scr., 81 (2010), 025009, 5pp.doi: 10.1088/0031-8949/81/02/025009. |
[33] |
W. Zhong, Y. Shao and Z. He, Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability, Phys. Rev. E, 73 (2006), 060902, 4pp.doi: 10.1103/PhysRevE.73.060902. |
[34] |
W. Zhong, Y. Shao and Z. He, Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance, Phys. Rev. E, 74 (2006), 011916, 4pp.doi: 10.1103/PhysRevE.74.011916. |