August  2013, 7(3): 697-716. doi: 10.3934/ipi.2013.7.697

Non-Gaussian dynamics of a tumor growth system with immunization

1. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710129, China, China

2. 

Institute for Pure and Applied Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States

3. 

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616

Received  June 2012 Revised  March 2013 Published  September 2013

This paper is devoted to exploring the effects of non-Gaussian fluctuations on dynamical evolution of a tumor growth model with immunization, subject to non-Gaussian $\alpha$-stable type Lévy noise. The corresponding deterministic model has two meaningful states which represent the state of tumor extinction and the state of stable tumor, respectively. To characterize the time for different initial densities of tumor cells staying in the domain between these two states and the likelihood of crossing this domain, the mean exit time and the escape probability are quantified by numerically solving differential-integral equations with appropriate exterior boundary conditions. The relationships between the dynamical properties and the noise parameters are examined. It is found that in the different stages of tumor, the noise parameters have different influences on the time and the likelihood inducing tumor extinction. These results are relevant for determining efficient therapeutic regimes to induce the extinction of tumor cells.
Citation: Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems & Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697
References:
[1]

J. A. Adam, The dynamics of growth-factor-modified immune response to cancer growth: One dimensional models,, Mathl. Comput. Modelling, 17 (1993), 83.  doi: 10.1016/0895-7177(93)90041-V.  Google Scholar

[2]

S. Albeverrio, B. Rüdiger and J. L. Wu, Invariant measures and symmetry property of lévy type operators,, Potential Analysis, 13 (2000), 147.  doi: 10.1023/A:1008705820024.  Google Scholar

[3]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge Studies in Advanced Mathematics, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[4]

F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra and G. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies,, Phys. Rev. Lett., 88 (2002).  doi: 10.1103/PhysRevLett.88.097901.  Google Scholar

[5]

T. Bose and S. Trimper, Stochastic model for tumor growth with immunization,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051903.  Google Scholar

[6]

J. R. Brannan, J. Duan and V. J. Ervin, Escape probability, mean residence time and geophysical fluid particle dynamics,, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, 133 (1999), 23.  doi: 10.1016/S0167-2789(99)00096-2.  Google Scholar

[7]

H. Chen, J. Duan, X. Li and C. Zhang, A computational analysis for mean exit time under non-Gaussian lévy noises,, Applied Mathematics and Computation, 218 (2011), 1845.  doi: 10.1016/j.amc.2011.06.068.  Google Scholar

[8]

Z. Chen, P. Kim and R. Song, Heat kernel estimates for Dirichlet fractional laplacian,, J. European Math. Soc., 12 (2010), 1307.  doi: 10.4171/JEMS/231.  Google Scholar

[9]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[10]

J. R. R. Duarte, M. V. D. Vermelho and M. L. Lyra, Stochastic resonance of a periodically driven neuron under non-Gaussian noise,, Physica A, 387 (2008), 1446.  doi: 10.1016/j.physa.2007.11.011.  Google Scholar

[11]

A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo and E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment,, Eur. Phys. J. B, 65 (2008), 435.  doi: 10.1140/epjb/e2008-00246-2.  Google Scholar

[12]

A. Fiasconaro and B. Spagnolo, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.041904.  Google Scholar

[13]

T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by lévy noise, preprint,, , ().   Google Scholar

[14]

R. P. Garay and R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions,, J. Theor. Biol., 73 (1978), 417.  doi: 10.1016/0022-5193(78)90150-9.  Google Scholar

[15]

W. Horsthemke and R. Lefever, "Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology,", Springer Series in Synergetics, (1984).   Google Scholar

[16]

N. E. Humphries et al., Environmental context explains lévy and brownian movement patterns of marine predators,, Nature, 465 (2010), 1066.  doi: 10.1038/nature09116.  Google Scholar

[17]

L. Jiang, X. Luo, D. Wu and S. Zhu, Stochastic properties of tumor growth driven by white lévy noise,, Modern Physics Letters B, 26 (2012).  doi: 10.1142/S0217984912501497.  Google Scholar

[18]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[19]

A. E. Kyprianou, "Introductory Lectures on Fluctuations of Lévy Processes with Applications,", Springer-Verlag, (2006).   Google Scholar

[20]

R. Lefever and W. Horsthemk, Bistability in fluctuating environments. Implications in tumor immumology,, Bulletin of Mathematical Biology, 41 (1979), 469.  doi: 10.1007/BF02458325.  Google Scholar

[21]

D. Li, W. Xu, Y. Guo and Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment,, Physics Letters A, 375 (2011), 886.  doi: 10.1016/j.physleta.2010.12.066.  Google Scholar

[22]

M. Liao, The dirichlet problem of a discontinuous markov process,, A Chinese summary appears in Acta Math., 33 (1989), 9.  doi: 10.1007/BF02107618.  Google Scholar

[23]

T. Naeh, M. M. Klosek, B. J. Matkowsky and Z. Schuss, A direct approach to the exit problem,, SIAM J. Appl. Math., 50 (1990), 595.  doi: 10.1137/0150036.  Google Scholar

[24]

A. Ochab-Marcinek and E. Gudowska-Nowak, Population growth and control in stochastic models of cancer development,, Physica A, 343 (2004), 557.  doi: 10.1016/j.physa.2004.06.071.  Google Scholar

[25]

I. Prigogine and R. Lefever, Stability problems in cancer growth and nucleation,, Comp. Biochem. Physiol, 67 (1980), 389.  doi: 10.1016/0305-0491(80)90326-0.  Google Scholar

[26]

H. Qiao, X. Kan and J. Duan, Escape probability for stochastic dynamical systems with jumps,, Malliavin Calculus and Stochastic Analysis, 34 (2013), 195.  doi: 10.1007/978-1-4614-5906-4_9.  Google Scholar

[27]

K.-I. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, (1990).   Google Scholar

[28]

D. Schertzer, M. Larchevêque, J. Duan, V. V. Yanovsky and S. Lovejoy, Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian lévy stable noises,, J. Math. Phys., 42 (2001), 200.  doi: 10.1063/1.1318734.  Google Scholar

[29]

Z. Schuss, "Theory and Applications of Stochastic Differential Equations,", Wiley Series in Probability and Statistics, (1980).   Google Scholar

[30]

C. Zeng, X. Zhou and S. Tao, Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/49/495002.  Google Scholar

[31]

C. Zeng and H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response,, J. Stat. Phys., 141 (2010), 889.  doi: 10.1007/s10955-010-0068-8.  Google Scholar

[32]

C. Zeng, Effects of correlated noise in a tumor cell growth model in the presence of immune response,, Phys. Scr., 81 (2010).  doi: 10.1088/0031-8949/81/02/025009.  Google Scholar

[33]

W. Zhong, Y. Shao and Z. He, Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.060902.  Google Scholar

[34]

W. Zhong, Y. Shao and Z. He, Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011916.  Google Scholar

show all references

References:
[1]

J. A. Adam, The dynamics of growth-factor-modified immune response to cancer growth: One dimensional models,, Mathl. Comput. Modelling, 17 (1993), 83.  doi: 10.1016/0895-7177(93)90041-V.  Google Scholar

[2]

S. Albeverrio, B. Rüdiger and J. L. Wu, Invariant measures and symmetry property of lévy type operators,, Potential Analysis, 13 (2000), 147.  doi: 10.1023/A:1008705820024.  Google Scholar

[3]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge Studies in Advanced Mathematics, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[4]

F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra and G. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies,, Phys. Rev. Lett., 88 (2002).  doi: 10.1103/PhysRevLett.88.097901.  Google Scholar

[5]

T. Bose and S. Trimper, Stochastic model for tumor growth with immunization,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051903.  Google Scholar

[6]

J. R. Brannan, J. Duan and V. J. Ervin, Escape probability, mean residence time and geophysical fluid particle dynamics,, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, 133 (1999), 23.  doi: 10.1016/S0167-2789(99)00096-2.  Google Scholar

[7]

H. Chen, J. Duan, X. Li and C. Zhang, A computational analysis for mean exit time under non-Gaussian lévy noises,, Applied Mathematics and Computation, 218 (2011), 1845.  doi: 10.1016/j.amc.2011.06.068.  Google Scholar

[8]

Z. Chen, P. Kim and R. Song, Heat kernel estimates for Dirichlet fractional laplacian,, J. European Math. Soc., 12 (2010), 1307.  doi: 10.4171/JEMS/231.  Google Scholar

[9]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[10]

J. R. R. Duarte, M. V. D. Vermelho and M. L. Lyra, Stochastic resonance of a periodically driven neuron under non-Gaussian noise,, Physica A, 387 (2008), 1446.  doi: 10.1016/j.physa.2007.11.011.  Google Scholar

[11]

A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo and E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment,, Eur. Phys. J. B, 65 (2008), 435.  doi: 10.1140/epjb/e2008-00246-2.  Google Scholar

[12]

A. Fiasconaro and B. Spagnolo, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.041904.  Google Scholar

[13]

T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by lévy noise, preprint,, , ().   Google Scholar

[14]

R. P. Garay and R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions,, J. Theor. Biol., 73 (1978), 417.  doi: 10.1016/0022-5193(78)90150-9.  Google Scholar

[15]

W. Horsthemke and R. Lefever, "Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology,", Springer Series in Synergetics, (1984).   Google Scholar

[16]

N. E. Humphries et al., Environmental context explains lévy and brownian movement patterns of marine predators,, Nature, 465 (2010), 1066.  doi: 10.1038/nature09116.  Google Scholar

[17]

L. Jiang, X. Luo, D. Wu and S. Zhu, Stochastic properties of tumor growth driven by white lévy noise,, Modern Physics Letters B, 26 (2012).  doi: 10.1142/S0217984912501497.  Google Scholar

[18]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[19]

A. E. Kyprianou, "Introductory Lectures on Fluctuations of Lévy Processes with Applications,", Springer-Verlag, (2006).   Google Scholar

[20]

R. Lefever and W. Horsthemk, Bistability in fluctuating environments. Implications in tumor immumology,, Bulletin of Mathematical Biology, 41 (1979), 469.  doi: 10.1007/BF02458325.  Google Scholar

[21]

D. Li, W. Xu, Y. Guo and Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment,, Physics Letters A, 375 (2011), 886.  doi: 10.1016/j.physleta.2010.12.066.  Google Scholar

[22]

M. Liao, The dirichlet problem of a discontinuous markov process,, A Chinese summary appears in Acta Math., 33 (1989), 9.  doi: 10.1007/BF02107618.  Google Scholar

[23]

T. Naeh, M. M. Klosek, B. J. Matkowsky and Z. Schuss, A direct approach to the exit problem,, SIAM J. Appl. Math., 50 (1990), 595.  doi: 10.1137/0150036.  Google Scholar

[24]

A. Ochab-Marcinek and E. Gudowska-Nowak, Population growth and control in stochastic models of cancer development,, Physica A, 343 (2004), 557.  doi: 10.1016/j.physa.2004.06.071.  Google Scholar

[25]

I. Prigogine and R. Lefever, Stability problems in cancer growth and nucleation,, Comp. Biochem. Physiol, 67 (1980), 389.  doi: 10.1016/0305-0491(80)90326-0.  Google Scholar

[26]

H. Qiao, X. Kan and J. Duan, Escape probability for stochastic dynamical systems with jumps,, Malliavin Calculus and Stochastic Analysis, 34 (2013), 195.  doi: 10.1007/978-1-4614-5906-4_9.  Google Scholar

[27]

K.-I. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, (1990).   Google Scholar

[28]

D. Schertzer, M. Larchevêque, J. Duan, V. V. Yanovsky and S. Lovejoy, Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian lévy stable noises,, J. Math. Phys., 42 (2001), 200.  doi: 10.1063/1.1318734.  Google Scholar

[29]

Z. Schuss, "Theory and Applications of Stochastic Differential Equations,", Wiley Series in Probability and Statistics, (1980).   Google Scholar

[30]

C. Zeng, X. Zhou and S. Tao, Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/49/495002.  Google Scholar

[31]

C. Zeng and H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response,, J. Stat. Phys., 141 (2010), 889.  doi: 10.1007/s10955-010-0068-8.  Google Scholar

[32]

C. Zeng, Effects of correlated noise in a tumor cell growth model in the presence of immune response,, Phys. Scr., 81 (2010).  doi: 10.1088/0031-8949/81/02/025009.  Google Scholar

[33]

W. Zhong, Y. Shao and Z. He, Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.060902.  Google Scholar

[34]

W. Zhong, Y. Shao and Z. He, Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011916.  Google Scholar

[1]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[2]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[5]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[6]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[7]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[8]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[9]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[10]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[13]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[14]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[15]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[16]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[17]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[20]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]