August  2013, 7(3): 697-716. doi: 10.3934/ipi.2013.7.697

Non-Gaussian dynamics of a tumor growth system with immunization

1. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710129, China, China

2. 

Institute for Pure and Applied Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, United States

3. 

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616

Received  June 2012 Revised  March 2013 Published  September 2013

This paper is devoted to exploring the effects of non-Gaussian fluctuations on dynamical evolution of a tumor growth model with immunization, subject to non-Gaussian $\alpha$-stable type Lévy noise. The corresponding deterministic model has two meaningful states which represent the state of tumor extinction and the state of stable tumor, respectively. To characterize the time for different initial densities of tumor cells staying in the domain between these two states and the likelihood of crossing this domain, the mean exit time and the escape probability are quantified by numerically solving differential-integral equations with appropriate exterior boundary conditions. The relationships between the dynamical properties and the noise parameters are examined. It is found that in the different stages of tumor, the noise parameters have different influences on the time and the likelihood inducing tumor extinction. These results are relevant for determining efficient therapeutic regimes to induce the extinction of tumor cells.
Citation: Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems & Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697
References:
[1]

J. A. Adam, The dynamics of growth-factor-modified immune response to cancer growth: One dimensional models,, Mathl. Comput. Modelling, 17 (1993), 83.  doi: 10.1016/0895-7177(93)90041-V.  Google Scholar

[2]

S. Albeverrio, B. Rüdiger and J. L. Wu, Invariant measures and symmetry property of lévy type operators,, Potential Analysis, 13 (2000), 147.  doi: 10.1023/A:1008705820024.  Google Scholar

[3]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge Studies in Advanced Mathematics, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[4]

F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra and G. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies,, Phys. Rev. Lett., 88 (2002).  doi: 10.1103/PhysRevLett.88.097901.  Google Scholar

[5]

T. Bose and S. Trimper, Stochastic model for tumor growth with immunization,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051903.  Google Scholar

[6]

J. R. Brannan, J. Duan and V. J. Ervin, Escape probability, mean residence time and geophysical fluid particle dynamics,, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, 133 (1999), 23.  doi: 10.1016/S0167-2789(99)00096-2.  Google Scholar

[7]

H. Chen, J. Duan, X. Li and C. Zhang, A computational analysis for mean exit time under non-Gaussian lévy noises,, Applied Mathematics and Computation, 218 (2011), 1845.  doi: 10.1016/j.amc.2011.06.068.  Google Scholar

[8]

Z. Chen, P. Kim and R. Song, Heat kernel estimates for Dirichlet fractional laplacian,, J. European Math. Soc., 12 (2010), 1307.  doi: 10.4171/JEMS/231.  Google Scholar

[9]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[10]

J. R. R. Duarte, M. V. D. Vermelho and M. L. Lyra, Stochastic resonance of a periodically driven neuron under non-Gaussian noise,, Physica A, 387 (2008), 1446.  doi: 10.1016/j.physa.2007.11.011.  Google Scholar

[11]

A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo and E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment,, Eur. Phys. J. B, 65 (2008), 435.  doi: 10.1140/epjb/e2008-00246-2.  Google Scholar

[12]

A. Fiasconaro and B. Spagnolo, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.041904.  Google Scholar

[13]

T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by lévy noise, preprint,, , ().   Google Scholar

[14]

R. P. Garay and R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions,, J. Theor. Biol., 73 (1978), 417.  doi: 10.1016/0022-5193(78)90150-9.  Google Scholar

[15]

W. Horsthemke and R. Lefever, "Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology,", Springer Series in Synergetics, (1984).   Google Scholar

[16]

N. E. Humphries et al., Environmental context explains lévy and brownian movement patterns of marine predators,, Nature, 465 (2010), 1066.  doi: 10.1038/nature09116.  Google Scholar

[17]

L. Jiang, X. Luo, D. Wu and S. Zhu, Stochastic properties of tumor growth driven by white lévy noise,, Modern Physics Letters B, 26 (2012).  doi: 10.1142/S0217984912501497.  Google Scholar

[18]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[19]

A. E. Kyprianou, "Introductory Lectures on Fluctuations of Lévy Processes with Applications,", Springer-Verlag, (2006).   Google Scholar

[20]

R. Lefever and W. Horsthemk, Bistability in fluctuating environments. Implications in tumor immumology,, Bulletin of Mathematical Biology, 41 (1979), 469.  doi: 10.1007/BF02458325.  Google Scholar

[21]

D. Li, W. Xu, Y. Guo and Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment,, Physics Letters A, 375 (2011), 886.  doi: 10.1016/j.physleta.2010.12.066.  Google Scholar

[22]

M. Liao, The dirichlet problem of a discontinuous markov process,, A Chinese summary appears in Acta Math., 33 (1989), 9.  doi: 10.1007/BF02107618.  Google Scholar

[23]

T. Naeh, M. M. Klosek, B. J. Matkowsky and Z. Schuss, A direct approach to the exit problem,, SIAM J. Appl. Math., 50 (1990), 595.  doi: 10.1137/0150036.  Google Scholar

[24]

A. Ochab-Marcinek and E. Gudowska-Nowak, Population growth and control in stochastic models of cancer development,, Physica A, 343 (2004), 557.  doi: 10.1016/j.physa.2004.06.071.  Google Scholar

[25]

I. Prigogine and R. Lefever, Stability problems in cancer growth and nucleation,, Comp. Biochem. Physiol, 67 (1980), 389.  doi: 10.1016/0305-0491(80)90326-0.  Google Scholar

[26]

H. Qiao, X. Kan and J. Duan, Escape probability for stochastic dynamical systems with jumps,, Malliavin Calculus and Stochastic Analysis, 34 (2013), 195.  doi: 10.1007/978-1-4614-5906-4_9.  Google Scholar

[27]

K.-I. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, (1990).   Google Scholar

[28]

D. Schertzer, M. Larchevêque, J. Duan, V. V. Yanovsky and S. Lovejoy, Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian lévy stable noises,, J. Math. Phys., 42 (2001), 200.  doi: 10.1063/1.1318734.  Google Scholar

[29]

Z. Schuss, "Theory and Applications of Stochastic Differential Equations,", Wiley Series in Probability and Statistics, (1980).   Google Scholar

[30]

C. Zeng, X. Zhou and S. Tao, Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/49/495002.  Google Scholar

[31]

C. Zeng and H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response,, J. Stat. Phys., 141 (2010), 889.  doi: 10.1007/s10955-010-0068-8.  Google Scholar

[32]

C. Zeng, Effects of correlated noise in a tumor cell growth model in the presence of immune response,, Phys. Scr., 81 (2010).  doi: 10.1088/0031-8949/81/02/025009.  Google Scholar

[33]

W. Zhong, Y. Shao and Z. He, Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.060902.  Google Scholar

[34]

W. Zhong, Y. Shao and Z. He, Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011916.  Google Scholar

show all references

References:
[1]

J. A. Adam, The dynamics of growth-factor-modified immune response to cancer growth: One dimensional models,, Mathl. Comput. Modelling, 17 (1993), 83.  doi: 10.1016/0895-7177(93)90041-V.  Google Scholar

[2]

S. Albeverrio, B. Rüdiger and J. L. Wu, Invariant measures and symmetry property of lévy type operators,, Potential Analysis, 13 (2000), 147.  doi: 10.1023/A:1008705820024.  Google Scholar

[3]

D. Applebaum, "Lévy Processes and Stochastic Calculus,", Cambridge Studies in Advanced Mathematics, (2004).  doi: 10.1017/CBO9780511755323.  Google Scholar

[4]

F. Bartumeus, J. Catalan, U. L. Fulco, M. L. Lyra and G. Viswanathan, Optimizing the encounter rate in biological interactions: Lévy versus brownian strategies,, Phys. Rev. Lett., 88 (2002).  doi: 10.1103/PhysRevLett.88.097901.  Google Scholar

[5]

T. Bose and S. Trimper, Stochastic model for tumor growth with immunization,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051903.  Google Scholar

[6]

J. R. Brannan, J. Duan and V. J. Ervin, Escape probability, mean residence time and geophysical fluid particle dynamics,, Predictability: Quantifying uncertainty in models of complex phenomena (Los Alamos, 133 (1999), 23.  doi: 10.1016/S0167-2789(99)00096-2.  Google Scholar

[7]

H. Chen, J. Duan, X. Li and C. Zhang, A computational analysis for mean exit time under non-Gaussian lévy noises,, Applied Mathematics and Computation, 218 (2011), 1845.  doi: 10.1016/j.amc.2011.06.068.  Google Scholar

[8]

Z. Chen, P. Kim and R. Song, Heat kernel estimates for Dirichlet fractional laplacian,, J. European Math. Soc., 12 (2010), 1307.  doi: 10.4171/JEMS/231.  Google Scholar

[9]

L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations,, J. Theoret. Biol., 238 (2006), 841.  doi: 10.1016/j.jtbi.2005.06.037.  Google Scholar

[10]

J. R. R. Duarte, M. V. D. Vermelho and M. L. Lyra, Stochastic resonance of a periodically driven neuron under non-Gaussian noise,, Physica A, 387 (2008), 1446.  doi: 10.1016/j.physa.2007.11.011.  Google Scholar

[11]

A. Fiasconaro, A. Ochab-Marcinek, B. Spagnolo and E. Gudowska-Nowak, Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment,, Eur. Phys. J. B, 65 (2008), 435.  doi: 10.1140/epjb/e2008-00246-2.  Google Scholar

[12]

A. Fiasconaro and B. Spagnolo, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.041904.  Google Scholar

[13]

T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by lévy noise, preprint,, , ().   Google Scholar

[14]

R. P. Garay and R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions,, J. Theor. Biol., 73 (1978), 417.  doi: 10.1016/0022-5193(78)90150-9.  Google Scholar

[15]

W. Horsthemke and R. Lefever, "Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology,", Springer Series in Synergetics, (1984).   Google Scholar

[16]

N. E. Humphries et al., Environmental context explains lévy and brownian movement patterns of marine predators,, Nature, 465 (2010), 1066.  doi: 10.1038/nature09116.  Google Scholar

[17]

L. Jiang, X. Luo, D. Wu and S. Zhu, Stochastic properties of tumor growth driven by white lévy noise,, Modern Physics Letters B, 26 (2012).  doi: 10.1142/S0217984912501497.  Google Scholar

[18]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.  doi: 10.1007/s002850050127.  Google Scholar

[19]

A. E. Kyprianou, "Introductory Lectures on Fluctuations of Lévy Processes with Applications,", Springer-Verlag, (2006).   Google Scholar

[20]

R. Lefever and W. Horsthemk, Bistability in fluctuating environments. Implications in tumor immumology,, Bulletin of Mathematical Biology, 41 (1979), 469.  doi: 10.1007/BF02458325.  Google Scholar

[21]

D. Li, W. Xu, Y. Guo and Y. Xu, Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment,, Physics Letters A, 375 (2011), 886.  doi: 10.1016/j.physleta.2010.12.066.  Google Scholar

[22]

M. Liao, The dirichlet problem of a discontinuous markov process,, A Chinese summary appears in Acta Math., 33 (1989), 9.  doi: 10.1007/BF02107618.  Google Scholar

[23]

T. Naeh, M. M. Klosek, B. J. Matkowsky and Z. Schuss, A direct approach to the exit problem,, SIAM J. Appl. Math., 50 (1990), 595.  doi: 10.1137/0150036.  Google Scholar

[24]

A. Ochab-Marcinek and E. Gudowska-Nowak, Population growth and control in stochastic models of cancer development,, Physica A, 343 (2004), 557.  doi: 10.1016/j.physa.2004.06.071.  Google Scholar

[25]

I. Prigogine and R. Lefever, Stability problems in cancer growth and nucleation,, Comp. Biochem. Physiol, 67 (1980), 389.  doi: 10.1016/0305-0491(80)90326-0.  Google Scholar

[26]

H. Qiao, X. Kan and J. Duan, Escape probability for stochastic dynamical systems with jumps,, Malliavin Calculus and Stochastic Analysis, 34 (2013), 195.  doi: 10.1007/978-1-4614-5906-4_9.  Google Scholar

[27]

K.-I. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, (1990).   Google Scholar

[28]

D. Schertzer, M. Larchevêque, J. Duan, V. V. Yanovsky and S. Lovejoy, Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian lévy stable noises,, J. Math. Phys., 42 (2001), 200.  doi: 10.1063/1.1318734.  Google Scholar

[29]

Z. Schuss, "Theory and Applications of Stochastic Differential Equations,", Wiley Series in Probability and Statistics, (1980).   Google Scholar

[30]

C. Zeng, X. Zhou and S. Tao, Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/49/495002.  Google Scholar

[31]

C. Zeng and H. Wang, Colored noise enhanced stability in a tumor cell growth system under immune response,, J. Stat. Phys., 141 (2010), 889.  doi: 10.1007/s10955-010-0068-8.  Google Scholar

[32]

C. Zeng, Effects of correlated noise in a tumor cell growth model in the presence of immune response,, Phys. Scr., 81 (2010).  doi: 10.1088/0031-8949/81/02/025009.  Google Scholar

[33]

W. Zhong, Y. Shao and Z. He, Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.060902.  Google Scholar

[34]

W. Zhong, Y. Shao and Z. He, Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.011916.  Google Scholar

[1]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[2]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[3]

Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154

[4]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[5]

Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001

[6]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[7]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[8]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[9]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[10]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[11]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[12]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[13]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[14]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[15]

Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925

[16]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[17]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[18]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[19]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[20]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]