Citation: |
[1] |
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.doi: 10.1137/080716542. |
[2] |
M. Bertalmío, G. Sapiro, V. Caselles and C. Ballester, Image inpainting, SIGGRAPH, 34 (2000), 417-424.doi: 10.1145/344779.344972. |
[3] |
M. Bertero and P. Boccacci, "Introduction to Inverse Problems in Imaging," Institute of Physics Publishing, Bristol, 1998.doi: 10.1887/0750304359. |
[4] |
N. Bose and K. Boo, High-resolution image reconstruction with multisensors, International Journal of Imaging Systems and Technology, 9 (1998), 294-304. |
[5] |
L. M. Bregman, A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming, (Russian) Z . Vycisl. Mat. i Mat. Fiz., 7 (1967), 620-631. |
[6] |
M. Brill and E. Schock, Iterative solution of ill-posed problems: A survey, in "Model Optimization in Exploration Geophysics" (Berlin, 1986), 13-37, Theory Practice Appl. Geophys., 1, Vieweg, Braunschweig, 1987. |
[7] |
J. F. Cai, R. H. Chan and Z. Shen, A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24 (2008), 131-149.doi: 10.1016/j.acha.2007.10.002. |
[8] |
J. F. Cai, S. Osher and Z. Shen, Linearized BRegman iterations for frame-based image deblurring, SIAM J. Imaging Sci., 2 (2009), 226-252.doi: 10.1137/080733371. |
[9] |
J. F. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8 (2009), 337-369.doi: 10.1137/090753504. |
[10] |
J. F. Cai, S. Osher and Z. Shen, Convergence of the linearized Bregman iteration for $l_1$-norm minimization, Math. Comput., 78 (2009), 2127-2136.doi: 10.1090/S0025-5718-09-02242-X. |
[11] |
J. F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for compressed sensing, Math. Comput., 78 (2009), 1515-1536.doi: 10.1090/S0025-5718-08-02189-3. |
[12] |
E. J. Candés and J. Romberg, Practical signal recovery from random projections, Wavelet Applications in Signal and Image Processing XI Proc. SPIE Conf. 5914 (2004). |
[13] |
A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math., 106 (2007), 529-587.doi: 10.1007/s00211-007-0075-0. |
[14] |
A. Chambolle, R. A. De Vore, N. Y. Lee and B. J. Lucier, Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Process., 7 (1998), 319-335.doi: 10.1109/83.661182. |
[15] |
R. H. Chan, T. F. Chan, L. Shen and Z. Shen, Wavelet algorithms for high-resolution image reconstruction, SIAM J. Sci. Comput., 24 (2003), 1408-1432.doi: 10.1137/S1064827500383123. |
[16] |
R. H. Chan, S. D. Riemenschneider, L. Shen and Z. Shen, Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 17 (2004), 91-115.doi: 10.1016/j.acha.2004.02.003. |
[17] |
R. H. Chan, Z. Shen and T. Xia, A framelet algorithm for enhancing video stills, Appl. Comput. Harmon. Anal., 23 (2007), 153-170.doi: 10.1016/j.acha.2006.10.003. |
[18] |
T. Chan and J. H. Shen, "Image Processing and Analysis-Variational, PDE, Wavelet, and Stochastic Methods," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.doi: 10.1137/1.9780898717877. |
[19] |
T. Chan, J. H. Shen and H. M. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vision, 25 (2006), 107-125.doi: 10.1007/s10851-006-5257-3. |
[20] |
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.doi: 10.1137/050626090. |
[21] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.doi: 10.1002/cpa.20042. |
[22] |
I. Daubechies, M. Fornasier and I. Loris, Accelerated projected gradient method for linear inverse problems with sparsity constraints, J. Fourier Anal. Appl. 14 (2008), 764-792.doi: 10.1007/s00041-008-9039-8. |
[23] |
I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (2003), 1-46.doi: 10.1016/S1063-5203(02)00511-0. |
[24] |
I. Daubechies, G. Teschke and L. Vese, Iteratively solving linear inverse problems under general convex constraints, Inverse Problems Imaging, 1 (2007), 29-46.doi: 10.3934/ipi.2007.1.29. |
[25] |
M. Donatelli, Fast transforms for high order boundary conditions in deconvolution problems, BIT, 50 (2010), 559-576.doi: 10.1007/s10543-010-0266-4. |
[26] |
M. Donatelli, On nondecreasing sequences of regularization parameters for nonstationary iterated tikhonov, Numer. Algor., 60 (2012), 651-668.doi: 10.1007/s11075-012-9593-7. |
[27] |
M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill-posed problems, with application to image deblurring, Inverse Problems, 29 (2013), 095008.doi: 10.1088/0266-5611/29/9/095008. |
[28] |
M. Elad and A. Feuer, Restoration of a single superresolution image from several blurred, noisy and undersampled measured images, IEEE Trans. Image Process, 6 (1997), 1646-1658.doi: 10.1109/83.650118. |
[29] |
H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996.doi: 10.1007/978-94-009-1740-8. |
[30] |
M. J. Fadili and J. L. Starck, Sparse representations and Bayesian image inpainting, Proc. SPARS'05, Vol. I, Rennes, France, 2005. |
[31] |
A. G. Fakeev, A class of iterative processes for solving degenerate systems of linear algebraic equations, U. S. S. R. Comput. Math. Math. Phys., 21 (1981), 15-22. |
[32] |
M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906-916.doi: 10.1109/TIP.2003.814255. |
[33] |
E. Hale, W. Yin and Y. Zhang, Fixed-point continuation for $l_1$-minimization: Methodology and convergence, SIAM J. Optim., 19 (2008), 1107-1130.doi: 10.1137/070698920. |
[34] |
M. Hanke and C. W. Groetsh, Nonstationary iterated tikhonov regularization, J. Optim. Theory Appl., 98 (1998), 37-53.doi: 10.1023/A:1022680629327. |
[35] |
M. Hanke and P. C. Hansen, Regularization methods for large-scale problems, Surveys Math. Indust., 3 (1993), 253-315. |
[36] |
P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems," SIAM, Philadelphia, 1997.doi: 10.1137/1.9780898719697. |
[37] |
J. T. King and D. Chillingworth, Approximation of generalized inverses by iterated regularization, Numer. Func. Anal. Opt., 1 (1979), 499-513.doi: 10.1080/01630567908816031. |
[38] |
A. V. Kryanev, An iterative method for solving incorrectly posed problems, U. S. S. R. Comput. Math. Math. Phys., 14 (1974), 25-35.doi: 10.1016/0041-5553(74)90133-5. |
[39] |
L. Landweber, An iteration formula for fredholm integral equations of the first kind, Am. J. Math., 73 (1951), 615-624.doi: 10.2307/2372313. |
[40] |
I. Loris, M. Bertero, C. De Mol, R. Zanella and L. Zanni, Accelerating gradient projection methods for $l_1$-constrained signal recovery by steplength selection rules, Appl. Comput. Harmon. Anal., 27 (2009), 247-254.doi: 10.1016/j.acha.2009.02.003. |
[41] |
S. Mallat, "A Wavelet Tour of Signal Processing," 2nd edition, Academic Press: San Diego, 1999. |
[42] |
V. A. Morozov, On the solution of functional equations by the method of regularization, Dokl. Akad. Nauk SSSR 167 510-512 (Russian), translated as Soviet Math. Dokl., 7 (1966), 414-417. |
[43] |
F. Natterer, "The Mathematics of Computerized Tomography," Reprint of the 1986 original. Classics in Applied Mathematics, 32. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.doi: 10.1137/1.9780898719284. |
[44] |
M. K. Ng, R. H. Chan and W. C. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851-866.doi: 10.1137/S1064827598341384. |
[45] |
S. Osher, Y. Mao, B. Dong and W. Yin, Fast linearized Bregman iteration for compressed sensing and sparse denoising, Commun. Math. Sci., 8 (2010), 93-111. |
[46] |
M. Piana and M. Bertero, Projected landweber method and preconditioning, Inverse Problems, 13 (1997), 441-464.doi: 10.1088/0266-5611/13/2/016. |
[47] |
O. N. Strand, Theory and methods related to the singular-function expansion and landweber's iteration for integral equations of the first kind, SIAM J. Numer. Anal, 11 (1974), 798-825.doi: 10.1137/0711066. |
[48] |
A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4 (1963), 1035-1038. |
[49] |
C. R. Vogel, "Computational Methods for Inverse Problems," With a foreword by H. T. Banks. Frontiers in Applied Mathematics, 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.doi: 10.1137/1.9780898717570. |
[50] |
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), 143-168.doi: 10.1137/070703983. |