August  2013, 7(3): 777-794. doi: 10.3934/ipi.2013.7.777

Wavelet frame based color image demosaicing

1. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

2. 

Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore, Singapore

3. 

Department of Mathematics, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

Received  July 2012 Revised  January 2013 Published  September 2013

Color image demosaicing consists in recovering full resolution color information from color-filter-array (CFA) samples with 66.7% amount of missing data. Most of the existing color demosaicing methods [14, 25, 16, 2, 26] are based on interpolation from inter-channel correlation and local geometry, which are not robust to highly saturated color images with small geometric features. In this paper, we introduce wavelet frame based methods by using a sparse wavelet [8, 22, 9, 23] approximation of individual color channels and color differences that recovers both geometric features and color information. The proposed models can be efficiently solved by Bregmanized operator splitting algorithm [27]. Numerical simulations of two datasets: McM and Kodak PhotoCD, show that our method outperforms other existing methods in terms of PSNR and visual quality.
Citation: Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777
References:
[1]

B. E. Bayer, Color imaging array,, U.S. Patent, (3971).

[2]

A. Buades, B. Coll, J.-M. Morel and C. Sbert, Self-similarity driven color demosaicking,, IEEE Transactions on Image Processing, 18 (2009), 1192. doi: 10.1109/TIP.2009.2017171.

[3]

J. F. Cai, R. Chan, L. Shen and Z. Shen, Simultaneously inpainting in image and transformed domains,, Numerische Mathematik, 112 (2009), 509. doi: 10.1007/s00211-009-0222-x.

[4]

J. F. Cai, R. H. Chan and Z. Shen, Simultaneous cartoon and texture inpainting,, Inverse Problems and Imaging, 4 (2010), 379. doi: 10.3934/ipi.2010.4.379.

[5]

J. F. Cai, R. H. Chan and Z. Shen, A framelet-based image inpainting algorithm,, Applied and Computational Harmonic Analysis, 24 (2008), 131. doi: 10.1016/j.acha.2007.10.002.

[6]

J. F. Cai, H. Ji, F. Shang and Z. Shen, Inpainting for compressed images,, Applied and Computational Harmonic Analysis, 29 (2010), 368. doi: 10.1016/j.acha.2010.01.005.

[7]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Model. Simul., 4 (2005), 1168. doi: 10.1137/050626090.

[8]

I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF Regional Conference Series in Applied Mathematics, 61., Society for Industrial and Applied Mathematics (SIAM), (1992). doi: 10.1137/1.9781611970104.

[9]

I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames,, Applied and Computational Harmonic Analysis, 14 (2003), 1. doi: 10.1016/S1063-5203(02)00511-0.

[10]

B. Dong, H. Ji, J. Li, Z. Shen and Y. Xu, Wavelet frame based blind image inpainting,, Applied and Computational Harmonic Analysis, 32 (2012), 268. doi: 10.1016/j.acha.2011.06.001.

[11]

B. Dong and Z. Shen, MRA based wavelet frames and applications,, IAS Lecture Notes Series, (2010).

[12]

J. W. Glotzbach, R. W. Schafer, and K. Illgner, A method of color fillter array interpolation with alias cancellation properties,, IEEE Int. Conf. Image Processing, 1 (2001), 141. doi: 10.1109/ICIP.2001.958973.

[13]

T. Goldstein and S. Osher, The split bregman algorithm for l1 regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. doi: 10.1137/080725891.

[14]

B. Gunturk, Y. Altunbasak and R. M. Mersereau, Color plane interpolation using alternating projections,, IEEE Transactions on Image Processing, 11 (2002), 997.

[15]

A. Haar, Zur theorie der orthogonalen funktionensysteme,, Mathematische Annalen, 69 (1910), 331. doi: 10.1007/BF01456326.

[16]

J. Hamilton Jr and J. Adams Jr, Adaptive color plan interpolation in single sensor color electronic camera,, U.S. Patent, 5 (1997), 629.

[17]

C. A Laroche and M. A Prescott, Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients, December 13 1994., US Patent 5, ().

[18]

W. Lu and Y. P. Tan, Color filter array demosaicking: New method and performance measures,, IEEE Transactions on Image Processing, 12 (2003), 1194.

[19]

H. S Malvar, L.-W. He, and R. Cutler, High-quality linear interpolation for demosaicing of bayer-patterned color images,, In, 3 (2004). doi: 10.1109/ICASSP.2004.1326587.

[20]

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration,, Multiscale Model. Simul., 4 (2005), 460. doi: 10.1137/040605412.

[21]

D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius and K. Egiazarian, Spatially adaptive color filter array interpolation for noiseless and noisy data,, International Journal of Imaging Systems and Technology, 17 (2007), 105. doi: 10.1002/ima.20109.

[22]

A. Ron and Z. Shen, Affine systems in $ l_2(\mathbbR^d)$: The analysis of the analysis operator,, Journal of Functional Analysis, 148 (1997), 408. doi: 10.1006/jfan.1996.3079.

[23]

Z. Shen, Wavelet frames and image restorations,, Proceedings of the International Congress of Mathematicians, IV (2010), 2834.

[24]

X. Wu and N. Zhang, Primary-consistent soft-decision color demosaicking for digital cameras (patent pending),, Image Processing, 13 (2004), 1263. doi: 10.1109/TIP.2004.832920.

[25]

L. Zhang and X. Wu, Color demosaicking via directional linear minimum mean square-error estimation,, IEEE Transactions on Image Processing, 14 (2005), 2167.

[26]

L. Zhang, X. Wu, A. Buades and X. Li, Color demosaicking by local directional interpolation and non-local adaptive thresholding,, Journal of Electronic Imaging, 20 (2011).

[27]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253. doi: 10.1137/090746379.

[28]

X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on bregman iteration,, Journal of Scientific Computing, 46 (2010), 20. doi: 10.1007/s10915-010-9408-8.

show all references

References:
[1]

B. E. Bayer, Color imaging array,, U.S. Patent, (3971).

[2]

A. Buades, B. Coll, J.-M. Morel and C. Sbert, Self-similarity driven color demosaicking,, IEEE Transactions on Image Processing, 18 (2009), 1192. doi: 10.1109/TIP.2009.2017171.

[3]

J. F. Cai, R. Chan, L. Shen and Z. Shen, Simultaneously inpainting in image and transformed domains,, Numerische Mathematik, 112 (2009), 509. doi: 10.1007/s00211-009-0222-x.

[4]

J. F. Cai, R. H. Chan and Z. Shen, Simultaneous cartoon and texture inpainting,, Inverse Problems and Imaging, 4 (2010), 379. doi: 10.3934/ipi.2010.4.379.

[5]

J. F. Cai, R. H. Chan and Z. Shen, A framelet-based image inpainting algorithm,, Applied and Computational Harmonic Analysis, 24 (2008), 131. doi: 10.1016/j.acha.2007.10.002.

[6]

J. F. Cai, H. Ji, F. Shang and Z. Shen, Inpainting for compressed images,, Applied and Computational Harmonic Analysis, 29 (2010), 368. doi: 10.1016/j.acha.2010.01.005.

[7]

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,, Multiscale Model. Simul., 4 (2005), 1168. doi: 10.1137/050626090.

[8]

I. Daubechies, "Ten Lectures on Wavelets," CBMS-NSF Regional Conference Series in Applied Mathematics, 61., Society for Industrial and Applied Mathematics (SIAM), (1992). doi: 10.1137/1.9781611970104.

[9]

I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames,, Applied and Computational Harmonic Analysis, 14 (2003), 1. doi: 10.1016/S1063-5203(02)00511-0.

[10]

B. Dong, H. Ji, J. Li, Z. Shen and Y. Xu, Wavelet frame based blind image inpainting,, Applied and Computational Harmonic Analysis, 32 (2012), 268. doi: 10.1016/j.acha.2011.06.001.

[11]

B. Dong and Z. Shen, MRA based wavelet frames and applications,, IAS Lecture Notes Series, (2010).

[12]

J. W. Glotzbach, R. W. Schafer, and K. Illgner, A method of color fillter array interpolation with alias cancellation properties,, IEEE Int. Conf. Image Processing, 1 (2001), 141. doi: 10.1109/ICIP.2001.958973.

[13]

T. Goldstein and S. Osher, The split bregman algorithm for l1 regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. doi: 10.1137/080725891.

[14]

B. Gunturk, Y. Altunbasak and R. M. Mersereau, Color plane interpolation using alternating projections,, IEEE Transactions on Image Processing, 11 (2002), 997.

[15]

A. Haar, Zur theorie der orthogonalen funktionensysteme,, Mathematische Annalen, 69 (1910), 331. doi: 10.1007/BF01456326.

[16]

J. Hamilton Jr and J. Adams Jr, Adaptive color plan interpolation in single sensor color electronic camera,, U.S. Patent, 5 (1997), 629.

[17]

C. A Laroche and M. A Prescott, Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients, December 13 1994., US Patent 5, ().

[18]

W. Lu and Y. P. Tan, Color filter array demosaicking: New method and performance measures,, IEEE Transactions on Image Processing, 12 (2003), 1194.

[19]

H. S Malvar, L.-W. He, and R. Cutler, High-quality linear interpolation for demosaicing of bayer-patterned color images,, In, 3 (2004). doi: 10.1109/ICASSP.2004.1326587.

[20]

S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration,, Multiscale Model. Simul., 4 (2005), 460. doi: 10.1137/040605412.

[21]

D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius and K. Egiazarian, Spatially adaptive color filter array interpolation for noiseless and noisy data,, International Journal of Imaging Systems and Technology, 17 (2007), 105. doi: 10.1002/ima.20109.

[22]

A. Ron and Z. Shen, Affine systems in $ l_2(\mathbbR^d)$: The analysis of the analysis operator,, Journal of Functional Analysis, 148 (1997), 408. doi: 10.1006/jfan.1996.3079.

[23]

Z. Shen, Wavelet frames and image restorations,, Proceedings of the International Congress of Mathematicians, IV (2010), 2834.

[24]

X. Wu and N. Zhang, Primary-consistent soft-decision color demosaicking for digital cameras (patent pending),, Image Processing, 13 (2004), 1263. doi: 10.1109/TIP.2004.832920.

[25]

L. Zhang and X. Wu, Color demosaicking via directional linear minimum mean square-error estimation,, IEEE Transactions on Image Processing, 14 (2005), 2167.

[26]

L. Zhang, X. Wu, A. Buades and X. Li, Color demosaicking by local directional interpolation and non-local adaptive thresholding,, Journal of Electronic Imaging, 20 (2011).

[27]

X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,, SIAM Journal on Imaging Sciences, 3 (2010), 253. doi: 10.1137/090746379.

[28]

X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on bregman iteration,, Journal of Scientific Computing, 46 (2010), 20. doi: 10.1007/s10915-010-9408-8.

[1]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[2]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[3]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[4]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[5]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

[6]

Jianbin Yang, Cong Wang. A wavelet frame approach for removal of mixed Gaussian and impulse noise on surfaces. Inverse Problems & Imaging, 2017, 11 (5) : 783-798. doi: 10.3934/ipi.2017037

[7]

Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018127

[8]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems & Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[9]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[10]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems & Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[11]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085

[12]

Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems & Imaging, 2018, 12 (6) : 1389-1410. doi: 10.3934/ipi.2018058

[13]

Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems & Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031

[14]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[15]

Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems & Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455

[16]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[17]

Laurence Cherfils, Hussein Fakih, Alain Miranville. Finite-dimensional attractors for the Bertozzi--Esedoglu--Gillette--Cahn--Hilliard equation in image inpainting. Inverse Problems & Imaging, 2015, 9 (1) : 105-125. doi: 10.3934/ipi.2015.9.105

[18]

Francisco J. Ibarrola, Ruben D. Spies. A two-step mixed inpainting method with curvature-based anisotropy and spatial adaptivity. Inverse Problems & Imaging, 2017, 11 (2) : 247-262. doi: 10.3934/ipi.2017012

[19]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[20]

Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]